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Abstract of the Dissertation 

The role of CDX4 during patterning of definitive hemogenic mesoderm  

by 

J. Philip Creamer 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Cell Biology 

Washington University in St. Louis, 2020 

Kyunghee Choi, Chair 

Christopher Sturgeon, Co-Chair 

 

The current standard of treatment for a variety of hematopoietic malignancies and genetic 

disorders is allogenic bone marrow transplantation, where donor hematopoietic stem cells 

(HSCs) engraft within the host and give rise to all of them hematopoietic lineages necessary for 

homeostasis. In many cases, finding a compatible human leukocyte antigen (HLA) matching 

donor is not possible, due to the large amount of genetic variation at those loci, but with the 

advent of induced pluripotent stem cells (iPSCs), unlimited sources of patient matched cells can 

be derived. Hematopoietic differentiations of human pluripotent stem cells (hPSCs) have been 

shown to recapitulate the early development of the embryo, producing known progenitors such 

as the hemangioblast, but current efforts have been unable to produce an HSC without the use of 

transgene expression. This is partly due to the complex nature of human developmental 

hematopoiesis, which is known to contain multiple hematopoietic programs of varying potential. 

These programs or ‘waves’ can be generally fit into two categories, the first being 
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extraembryonic hematopoiesis that occurs within the yolk sac earliest in development and 

produces mainly transient, primitive progenitors that support the developing embryo.  The 

second category is intraembryonic hematopoiesis, which occurs within the embryo proper, 

producing more mature progenitors, including the HSC, which arises from hemogenic 

endothelium (HE) in the dorsal aorta. 

Our lab has developed an hPSCs differentiation model that can identify and specify WNT 

independent, extraembryonic, primitive hematopoietic progenitors, and WNT dependent, 

intraembryonic, definitive hematopoietic progenitors through stage specific modulation of WNT 

signaling during the mesodermal stage of differentiation. I have shown that mesodermal 

expression of CDX4, a caudal-like homeobox transcription factor, is an important regulator of 

the specification of definitive HE, by utilizing a doxycycline inducible CDX4 hPSC line and a 

CDX4y/- KO hPSC line. In this work, I have demonstrated that CDX4 acts to induce canonical 

gene targets, such as medial HOXA genes, in different subsets of hemogenic mesoderm, likely 

impacting the specification of definitive HE. Surprisingly, TBX20, a cardiomyocyte transcription 

factor, was found to be a negatively regulated CDX4 target, suggesting that CDX4 might also 

play a role in regulating cardiac specification. I performed cardiomyocyte differentiations and 

demonstrated that CDX4y/- KO lead to a significant expansion of cardiomyocytes over WT and 

that mesodermal CDX4 expression abrogated this expansion. Additionally, single cell 

transcriptomics revealed that CDX4+ mesoderm also expresses CD1D, and when functionally 

characterized, definitive CD1D+ hemogenic mesoderm contained nearly all lymphoid, erythroid, 

and myeloid potential.  

These results will impact the field of hematopoietic differentiation, having extensively 

characterized the role of CDX4 in hemogenic mesoderm, it’s gene targets, and correlative 
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markers. Further studies will be able to leverage CDX4 and its downstream targets, such as 

HOXA genes, to improve hematopoietic differentiations, and perhaps improve cardiomyocyte 

differentiations by reducing the expression of CDX4.  
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Chapter 1: Rationale, introduction to 

developmental hematopoiesis and homeobox 

genes  

1.1 Hematopoietic stem cells  
Hematopoietic stem cells (HSCs) have been rigorously studied for decades for use in life-saving 

transplantation, as well as to understand hematopoiesis, and how they contribute to leukemic 

transformation in various hematopoietic malignancies. Multipotent progenitors were first 

identified in the mouse bone marrow as cells capable of producing clonogenic colonies of 

multiple hematopoietic cell types in the spleen of irradiated mice1-4. Further work lead to the 

characterization of these bone marrow progenitors via flow cytometry and isolation by flow 

cytometry assisted cell sorting (FACS), by removing all cells positive for lineage specific 

markers for B cells (B220), granulocytes (Gr-1), monocytes (Mac-1) and T cells (CD4 and 

CD8), and positive for Thy1 (CD90)5,  Sca16, and c-Kit7. This combination of markers is termed 

the Lineage-Sca1+c-Kit+ (LSK) fraction in mice, and a subset of these multipotent progenitors 

can be termed as HSCs, being capable of long-term self-renewal, as well as the production of 

multiple distinct lineages necessary for maintenance of circulating blood cells from only a single 

cell8. Later work in mice showed that an HSC containing population can be further purified from 

more lineage restricted progenitors through the use of CD150, CD48, CD229, and CD244 SLAM 

family markers9,10. While nascent human HSCs share the expression of markers like CD34, VE-

cadherin, CD45, C-KIT, and THY-111, the SLAM marker system is specific to mouse HSCs12.    
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The ability of these cells to reconstitute the circulating blood system of an adult has been 

exploited as a method of treatment for hematopoietic malignancies13,14 as well as anemias15, and 

blood related genetic disorders16,17. Though transplantation can offer treatment and even cures 

for many of these patients, these life-saving procedures are hampered by the necessity for high or 

complete matching of the human leukocyte antigen (HLA) loci18. This is due to the high level of 

variability found in humans at the HLA locus19, making the most likely donor candidates siblings 

of the patient; around 30% of patients will have a sibling with the correct HLA genotype to be an 

effective donor20, though autologous transplant is preferred in some cases for treatment of 

lymphomas21. Because of these unmet deficits in properly matched donors for treatments of 

hematological disorders, alternative approaches are needed to close the gap in available 

treatment options.    

1.2 Human pluripotent stem cells (hPSCs) 
Since the discovery of mouse pluripotent stem cells capable of unlimited expansion in vitro, 

differentiation into all three germs layers22, as well the ability to produce a viable embryo23, 

researchers have been continuously investigating ways to make clinically relevant cell types. 

With the discovery of human pluripotent stem cells (hPSCs) derived first from human embryos24 

and later through the genetic reprogramming of somatic cells to create induced pluripotent stem 

cells (iPSCs)25, it is now possible to produce patient specific iPSC lines with the potential to 

differentiate into any replacement cell type needed. Deriving iPSC lines can now be done 

without potentially risky gene editing26 and would be syngeneic to patients, preventing immune 

rejection in transplanted cell types. Additionally, hPSCs can be used to study early human 

development which is very difficult to study for ethic and technical reasons, as they have been 

shown to faithfully recapitulate many aspects of both mouse and human hematopoietic 
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development27-29. Despite the lack of a reliably produced, long-term engraftable progenitor, 

hematopoietic differentiation protocols have been steadily improved. Although there have been 

studies that have been able to produce an engraftable HSC in vitro30,31, they have relied on the 

usage of transgene over-expression, which would not be suitable for patient treatments and likely 

not faithfully represent the true developmental trajectory. Knowing the key steps in 

hematopoietic differentiation during embryological development will shed light on the processes 

that are necessary to be able to produce HSCs through in vitro differentiation in a transgene free 

manner. The modeling of hematopoietic differentiation in a dish using hPSCs will also help 

inform our understanding of human development where in vivo study is not possible. 

1.3 Hematopoietic Development 
Efforts to recapitulate early human hematopoietic development in vitro have been complicated 

by the existence of several distinct programs of hematopoiesis that are spatiotemporally 

segregated and given rise to lineages of differing cellular potential. There are multiple, separate 

waves of hematopoiesis in humans during early embryogenesis32-34, being either extraembryonic 

or intraembryonic in origin. Early anatomical studies of the blood islands in the yolk sacs of 

avian embryos noted the possibility of a common progenitor for blood and vasculature term the 

hemangioblast35,36. Direct evidence of hemangioblast was seen until much later through in vitro 

mouse pluripotent stem cell differentiations that yielded colonies of mixed blood and 

endothelium in semi-solid media, termed blast colony-forming cells (BL-CFCs)28, suggesting the 

presence of a cell capable of both lineages. Later in vivo mouse embryo studies also 

demonstrated the presence of a BL-CFC capable progenitor in the primitive streak, expressing 

KDR/Flk1 and brachyury/T 37. The hemangioblast is considered the direct progenitor of 

primitive hematopoiesis, as BL-CFC potential is found before the formation of primitive 
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hematopoietic progenitors both in vitro and in vivo, as well as lineage tracing studies 

demonstrating primitive hematopoietic cells were derived from KDR+ cells38. It was also found 

in mouse PSCs and embryos that ER71/Etv2 acts downstream of KDR/Flk1, as the loss of Etv2 

lead to pan hematopoietic and endothelium defects, providing additional evidence of common 

regulation of both lineages. Etv2 activation was also shown to be necessary in a brief window in 

mesoderm formation before or during the expression of KDR/Flk1 and loss of Etv2 could be 

rescued by Scl expression39. Scl expression in KDR+ progenitors has been shown to mark both 

blood and endothelium potential, further strengthening Scl as a regulator of the hemangioblast40.  

While these studies suggest a mesodermal progenitor that is dually potent for hematopoiesis and 

vasculature, there is some evidence against a common origin of endothelium and blood in vivo.  

Lineages studies utilizing injections of mouse blastocysts with mixtures mouse PSCs with 

recombinase activated fluorescent genes revealed that individual blood islands were nearly 

always mixed in origin41, suggested that the hemangioblast could be a mixed population. 

Additionally, there is evidence of the production of endothelium from the hemangioblast, that 

then gives rise to hematopoietic cells in the mouse yolk sac42, further questioning the presence of 

a truly, dually potent hemangioblast. 

In humans, primitive hematopoietic progenitors emerge as early as day 19 of conception in 

humans43and give rise to primitive erythrocytes mainly expressing epsilon globins44, 

megakaryocytes45, macrophages46, and microglia47. Some of the cell types arising from this 

program, such as the primitive erythrocytes and megakaryocytes are short lived and are 

eventually replaced48, though microglia and macrophages can persist throughout life. This 

directly contrasts with the intraembryonic, definitive hematopoietic program that gives rise to an 

HSC capable of long-term erythroid-myeloid-lymphoid-megakaryocytic engraftment, first in the 
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aorta gonad mesonephros (AGM) region at ~ 5 weeks of development33,49,50 and later in other 

hematopoietic tissues. There are, however, several hematopoietic programs that have been 

identified that produce lineages not found in the primitive hematopoietic program but are 

independent of the HSC. One of these is an extraembryonic lineages that has been extensively 

studied in the mouse termed the erytho-myeloid progenitor (EMP)51, which can give rise to more 

mature erythrocytes expressing adult globins, granulocytes, and macrophages52. Additionally, 

another progenitor termed the lymphomyeloid primed progenitor (LMPP) has also been found in 

the mouse yolk sac53, giving rise to myeloid and lymphoid progenitors, which had been thought 

to be restricted to the HSC. The production of mature definitive erythrocytes with adult β-globin 

expression54 and lymphoid progenitors which were previously thought to be HSC dependent, but 

yolk sac in origin, complicates these definitions. Whether to term these progenitors as 

‘definitive’ or ‘primitive’ is a difficult question, as well as whether they are present in the 

human. Recent work has shown that the mouse EMP is also capable of producing natural killer 

cells, another canonically believed lymphoid cell type, that also had a correlate EMP-like 

population in hPSC differentiations34. There is also evidence for progenitors capable of adult β-

globin expression in the early human fetal liver at 6 weeks, just as the first HSC’s are emerging 

and presumably have not had enough time to fully differentiate55. This work doesn’t directly 

prove there is a human EMP, though it provides supportive evidence for its existence. All of 

these different progenitor populations are summarized in Figure 1.1, adapted from Ditadi et al 

(2017)32.  

1.4 Hemogenic Endothelium 
Hematopoiesis is largely understood to arise from hemogenic endothelium (HE), which 

undergoes a process known as the endothelial to hematopoietic transition (EHT)56-59. HE is 
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generally understood to express endothelial markers like CD31/34, but also RUNX1, a 

hematopoietic transcription factor60, which primes the endothelium for the EHT59. HE gives rise 

to the nascent HSC’s which bud from the dorsal floor of the aorta in clusters and enter 

circulation and eventually populate the fetal liver61, where they mature and expand; these cells 

will then give rise to all circulating erythroid, myeloid, lymphoid, and megakaryocytic lineages 

necessary to sustain the developing fetus, and eventually colonize the bone marrow62. 

Hemogenic endothelium is known to not be exclusive to the dorsa aorta; though the 

hemangioblast also gives rise to hematopoietic progenitors and endothelium, there is 

disagreement in the literature on the origins of HE in relation to the hemangioblast, with the 

hemangioblast potentially giving rise to HE42. Since not all HE gives rise to the HSC, it cannot 

be used as a term exclusive to definitive hematopoiesis.  Complicating matters further, there has 

also been reports of HE capable of producing blood progenitors of varying potential in the 

human liver and fetal bone marrow63, as well HSCs from the mouse placenta64.   

What leads certain HE to give rise to an engrafting HSC, multipotent progenitors, or more 

lineage restricted progenitors is not well known, though genetic studies in MYB52 and RUNX165 

KO mice suggests that EMP/HSC-producing HE relies on these transcription factors, as only 

primitive hematopoiesis is completely unaffected in these models. Additionally, notch signaling 

is thought to be required for intraembryonic-HSC producing HE, whereas it appears to be 

dispensable for extraembryonic (EMP and primitive) lineages66-68. Notch signaling is important 

for the formation of endothelium in dorsal aorta where HE will ultimately arise69, but notch 

suppression is actually required for the emergence of the HSC from HE70. Recent work using 

single cell transcriptomics of early human embryos computationally identified two different 

types of intraembryonic HE, one that appeared to be HSC-primed, and another earlier HE 
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population that lacked arterial markers71. Because HE that gives rise to the HSC is found in the 

dorsal aorta, it has been assumed that HE arises from arterial endothelium, though in the 

literature there is evidence both supporting an independent origin for HE72, and it originating 

from arterial endothelium73.  

1.5 Hematopoietic differentiations from hPSCs  
Current methods of differentiating hPSCs into hematopoietic progenitors are built on decades of 

work first pioneered in mouse embryonic stem cells. Early techniques relied on culture in serum 

containing media with free floating aggregates known as embryoid bodies, which induced the 

production of many mesodermal lineages including endothelium, blood, and cardiomyocytes74. 

Further work characterized the hematopoietic lineages found in these early mouse differentiation 

studies, demonstrating the development of primitive erythrocytes and myeloid lineages, that 

could be increased with treatment of hematopoietic cytokines such as EPO, IL-3, and M-

CSF/GM-CSF75. These differentiations follow in vivo hematopoietic development, where 

primitive hematopoietic progenitors are produced first, followed by the later emergency of more 

mature definitive erythroid progenitors76,77.  After the isolation of human pluripotent stem cells, 

serum based differentiation approaches were also able to were also of giving rise to the 

hemangioblast in BL-CFC assays78, much like mouse PSC differentiations28, indicative of the 

primitive program. Later advances in the human system allowed for the development of serum 

free media that utilized addition of cytokines including bFGF, BMP4, and VEGF79-81. Usage of 

serum free media allows for dissection of the precise signaling requirements needed in order to 

specify hematopoietic progenitors, as the numerous factors contained in serum made 

understanding these requirements difficult.   
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Although it was possible to generate lymphoid cells from mouse embryonic stem cell 

differentiations using serum containing media and hypoxic condtions82, hPSCs require a 

coculture system with OP9 mouse stroma cells expressing notch ligands to specify T cells83. 

Despite later advances in cytokine based serum-free conditions that utilized TGFβ treatment to 

specify an endothelial populations capable of definitive erythrocytes and myeloid cells, the 

production of lymphoid lineages still requires the co-culture with OP9 stroma with notch 

ligands29. Nonetheless, just as in development, this work demonstrated that hPSC differentiations 

can produce both primitive/EMP erytho-myeloid potent progenitors and definitive erythro-

myeloid-lymphoid progenitors if the correct signaling modulations are made in a stage specific 

manner.  

While this serum free approach in hPSCs gives rise to primitive/EMP CD34+CD43+CD45+ 

hematopoietic progenitors and CD34+CD31+VECAD+CD43-CD45- definitive HE at certain 

timepoints29, it was not possible to purely produce only one or the other. WNT signaling had 

been implicated in hematopoietic differentiations previously84, but it was found that stage 

specific addition of either WNT antagonists/activin A or WNT agonists during mesoderm 

formation lead to the specification of a primitive/EMP hemogenic mesoderm or definitive 

mesoderm respectively85. The primitive hemogenic mesoderm was marked by KDR and 

glycophorin A (CD235a), giving rise to the hemangioblast and erythro-myeloid potential, while 

the definitive hemogenic mesoderm was KDR+ and CD235a-, giving rise to lymphoid, erythroid, 

and myeloid potential. This work allowed for precise control of the hematopoietic lineages 

produced in culture, differences in signaling requirements, and identification of distinct and 

easily segregable mesodermal origins for different waves of hematopoiesis. Interestingly, mouse 

embryonic stem cell differentiations also are influenced by agonizing WNT signaling, but this 
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instead promotes the primitive program and represents a key difference between the two 

systems86.   

Further advances in hPSC differentiation also identified a unique population that contained HE 

that was marked by CD34+CD43-CD184-CD73-, that on a single cell level was capable of 

lymphoid, erythroid, and myeloid potential and segregated from arterial and venous 

endothelium87. These culture conditions are summarized in Figure 1.2 adapted from Sturgeon et 

al. (2014)72. With these improvements in technique, it is now possible to precisely interrogate the 

genetic regulation behind the specification of hemogenic mesoderm of varying potential.      

1.6 Common mesodermal origins for HE and cardiac fates  
In the gastrulating embryo, multiple lineages and tissues will be produced from the nascent 

mesoderm, including the heart, blood, somites, and endothelium. There are many types of 

mesoderm formed, including axial mesoderm, paraxial mesoderm, intermediate mesoderm, and 

lateral plate mesoderm88; lateral plate mesoderm gives rise several of these lineages, include 

cardiac cells, hematopoietic cells, and endothelium. Because of these common origins, these 

lineages share signaling requirements, such as WNT, Nodal, and BMP89-91,  for their 

specification and development. Cardiac and hematoendothelial progenitors also share expression 

of Mesp1, a transcription factor necessary for early mesoderm formation92, as both the heart and 

HSCs were marked as Mesp1+ in lineage tracing studies93.  It is not clear if there is a single cell 

type that is plastic that gives rise to both cardiac and blood/endothelium or if there is a 

population of mesoderm containing a mixture of cardiac and hematoendothelial progenitors. 

Expression of Brachury (T) and Flk1 (KDR) can segregate these lineages in in vitro PSC 

differentiations, suggesting independent origins94, but transgenic activation of notch signaling 

was able to respecify hemangioblast containing populations to cardiomyocytes95. Additionally, 



www.manaraa.com

10 

  

KO of Scl, a critical pan-hematopoietic transcription factor, lead to the ectopic formation of 

cardiomyocytes in the yolk sacs of mouse embryos from CD31+ endothelium96. Scl has already 

been identified as a regulator of the hemangioblast, the progenitor of endothelium and primitive 

hematopoiesis40 as well as Etv2, which activates Scl39. These studies suggest that within the 

developing lateral plate mesoderm, there is a critical balance of a variety of factors that can 

swing the balance between hematoendothelial and cardiac lineages. From the literature available, 

it is unclear if there is a single cell type that gives rise to hematopoietic, endothelium, and 

cardiac lineages, or whether current known mesodermal markers simply represent a mixed 

population of already specified mesodermal subtypes.  

1.7 Homeobox genes and hematopoiesis 
Homeobox genes were first discovered in Drosophila, while trying to clone the genetic locus 

responsible for antennapedia mutants, where legs would grow from the head instead of 

antennae97. The antennapedia gene contains a helix-turn-helix protein structure, which can 

interact directly with DNA at a specific sequence, named the “homeobox”, of which many 

homologous and paralogous genes have since been found in vertebrates and invertebrates98,99. 

These include the HOX genes, which in mice and humans are linearly organized into four 

clusters (A-D) with 39 genes100 that play important roles in axial patterning, limb-specification, 

and early development. There are also the ParaHox genes, named for their similarity to HOX 

gene clusters and probability as a paralog when discovered as a similar cluster in lancets101. The 

ParaHox genes found in mice and humans are the GSX, PDX, and CDX gene families102, which 

have been broadly categorized as influencing brain/head, mid sectional, and caudal development 

respectively103. Generally, CDX genes have been found to activate during gastrulation in the 

early vertebrate embryo and work to activate the expression of  HOX genes in a concerted 
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pattern of expression anterior to posterior necessary for proper body plan formation104,105. In 

humans and mice, there are three CDX genes CDX1, CDX2, and CDX4 which have been shown 

to have somewhat compensatory functions106, extending as far complete complementation of 

Cdx1 with an in-frame Cdx2 sequence in mice, leading to a normal phenotype107. CDX and HOX 

genes have also been shown to be regulated by variety of different signaling pathways in a 

variety of different contexts, including fibroblast growth factor (FGF)108, WNT109, retinoic 

acid110, and transforming growth factor beta (TGF-β)111. Among their various roles in 

development, HOX and CDX genes have been shown to be important for hematopoiesis, in 

particular HSC-dependent definitive hematopoiesis. In the zebrafish, cdx4 mutants had early 

defects in all hematopoiesis that could be partially rescued with the expression of certain 

zebrafish hoxa and hoxb genes112, suggesting that cdx4 plays an important role in the 

specification of hematopoietic progenitors. Further in mouse embryos and embryonic stem cells 

seems to suggest that loss of Cdx1/2/4 all resulted in defects in specification of 

primitive/definitive hematopoietic progenitors coupled with a suppression in HoxA/B gene 

expression113,114, but with limited effects on HSCs115. HOXA genes have been specifically 

implicated in the regulation of the definitive hematopoietic program in both mouse and hPSC 

differentiation models. In particular, the medial HOXA genes, HOXA5,7,9, have been shown to 

be critical for human fetal liver HSC function, as well as hematopoietic progenitors differentiated 

from hPSCs116. In the mouse and murine embryonic stem cells, the formation of definitive HE 

has also been shown to be regulated by HoxA3, forming a regulatory relationship with Runx1, a 

critical hematopoietic transcription factor necessary for HSC formation117. This is mirrored in 

transcriptional profiling of FACS purified human AGM that displays a distinct HOXA+ gene 

signature, which is comparatively found in definitive hematopoietic progenitors differentiated 
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from hPSCs118. Within transgene dependent hPSC hematopoietic differentiations, HOX5/7/9 are 

also necessary for forming expanded lineage engraftable progenitors from less mature 

progenitors30,119, suggesting that HOXA expression is likely required for the specification of an 

HSC from HE. Collected together, these results suggest that CDX/HOXA genes are critical for 

not only the HSC, but also for the proper patterning of HE that gives rise to the HSC in vivo and 

in vitro. 
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Figure 1.1: Identified hematopoietic programs in mouse development 

Adapted from Ditadi et al. 201632, demonstrating the timing and development of hematopoietic 

progenitors of varying potential from different physical locations in the embryo. 
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Figure 1.2: Schematic of hPSCs hematopoietic differentiation model system 

Adapted from Stugeon et al. 201485, this details the differentiation used throughout this thesis to 

specify primitive/EMP hemogenic mesoderm and definitive hemogenic mesoderm and the 

lineages that arise from these mesodermal populations.  
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2.2 Abstract 
The generation of hematopoietic stem cells from human pluripotent stem cells (hPSCs) is a 

major goal for regenerative medicine. Achieving this goal is complicated by our incomplete 

understanding of the mechanism regulating definitive hematopoietic specification. We used our 

stage-specific hPSC differentiation method to obtain and identify, via CD235a expression, 

mesoderm harboring exclusively primitive or definitive hematopoietic potential to understand the 

genetic regulation of definitive hematopoietic specification. Whole-transcriptome gene 

expression analyses on WNT-dependent KDR+CD235a− definitive hematopoietic mesoderm 

and WNT-independent KDR+CD235a+ primitive hematopoietic mesoderm revealed strong CDX 

gene expression within definitive hematopoietic mesoderm. Temporal expression analyses 

revealed that CDX4 was expressed exclusively within definitive hematopoietic KDR+CD235a− 

mesoderm in a WNT- and fibroblast growth factor-dependent manner. We found that exogenous 

CDX4 expression exclusively during mesoderm specification resulted in a >90% repression in 

primitive hematopoietic potential, but conferred fivefold greater definitive hematopoietic 

potential, similar to that observed following WNT stimulation. In contrast, CDX4 knockout 

hPSCs had intact primitive hematopoietic potential, but exhibited a fivefold decrease in 

multilineage definitive hematopoietic potential. Taken together, these findings indicate that 

CDX4 is a critical transcription factor in the regulation of human definitive hematopoietic 

specification, and provides a mechanistic basis for WNT-mediated definitive hematopoietic 

specification from hPSCs. 

2.3 Introduction 
The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) 

is a major goal for regenerative medicine. To reproducibly achieve this goal, we must first 
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understand human hematopoietic ontogeny. Embryonic hematopoiesis is classically defined by 

the spatiotemporal emergence of at least 2 distinct programs.33  The first, primitive 

hematopoiesis, does not give rise to HSCs,120  but instead transiently gives rise to a limited 

subset of lineages, including HBE-expressing erythroblasts or primitive erythroid colony-

forming cells (EryP-CFCs), which can be reliably used as an indicator of the primitive 

hematopoietic program.29,85 Shortly thereafter, the definitive program emerges and gives rise to 

all lineages found in the adult, including the HSC.49,121  When differentiating hPSCs, the 

development of the definitive program can be distinguished from the primitive program by using 

in vitro assays for HBG-expressing erythroblasts and T lymphocytes.29  However, the genetic 

regulation of human definitive hematopoietic specification, both in vivo and in vitro, remains 

unclear. 

We recently developed a method to independently specify progenitors of the primitive or 

definitive hematopoietic programs from hPSCs via stage-specific manipulation of canonical 

WNT signaling.85  This approach generates a WNT-dependent KDR+CD235a− mesodermal 

population that gives rise to CD34+ definitive hematopoietic progenitors, as well as a WNT-

independent KDR+CD235a+ mesodermal population that gives rise to CD43+ primitive 

hematopoietic progenitors. Using this tractable system, we interrogated the transcriptional 

regulation of definitive hematopoietic specification at its earliest identifiable mesodermal 

progenitor, and identified CDX4 as a critical regulator of human definitive hematopoietic 

progenitor specification. 

2.4 Methods 
Culture and differentiation. The hPSC line H1 (WA01; WiCell) was maintained on irradiated 

mouse embryonicfibroblasts in hESC media as described previously78. hPSCs were differentiated 
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as described previously72,85. Briefly, hPSCs were MEF-depleted by culturing on Matrigel (BD 

Biosciences) in hESC media for 24 hr. Embryoid bodies were generated by treating hPSCs with 

trypsin-EDTA (0.05%) for 1 min. Cells were detached by scraping to form small aggregates (6–

10 cells). Embryoid bodies were resuspended in SFD122 supplemented with L-glutamine(2 mM), 

ascorbic acid (1 mM), monothioglycerol (MTG, 4x10-4 M; Sigma), holo-transferrin (150 

µg/mL), BMP-4 (10 ng/mL), bFGF (5 ng/mL), Activin A (1 ng/mL), and either DMSO (vehicle 

control; 0.1%), CHIR99021 (3 µM), or IWP2 (3 µM), as indicated in Figure 1A. Following 72 

hrs of differentiation, embryoid bodies were washed with IMDM and then placed in StemPro-34 

media supplemented with L-glutamine (2 mM), ascorbic acid (1 mM), monothioglycerol (MTG, 

4 × 10−4 M; Sigma-Aldrich), holo-transferrin (150 μg/mL), VEGF (15 ng/mL), IL-6 (10 

ng/mL), IGF-1 (25 ng/mL), IL-11 (5 ng/mL), SCF (50 ng/mL), and EPO (2 U/mL final). 

Cultures were maintained in a 5% CO2/5% O2/90% N2 environment. All recombinant factors are 

human and were purchased from R&D Systems (Minneapolis, MN) except EPO and IGF-1 

(Peprotech). Analysis of hematopoietic colony potential via Methocult (StemCellTechnologies) 

was performed as described previously29,87.  

Genome engineering of hPSCs. Generation of the inducible hCDX4 hPSC line was performed 

similar to that previously described, using a 3xFLAG-hCDX4 cDNA123. CDX4 knockout hPSCs, 

with a 77bp deletion and frameshift mutation in the first exon of CDX4, were generated using 

CRISPR/Cas9 technology. CRISPR guides (http://crispr.mit.edu/)124 were inserted into the 

MLM3636 plasmid (Addgene 43860), and along with Cas9 (Addgene 43945) were nucleofected 

into H1 hPSCs (Lonza). Single colonies were expanded and screened by PCR.  

Endothelial-to-hematopoietic transition assay. CD34+CD43- hemogenic endothelium was 

isolated by FACS and allowed to undergo the endothelial-to-hematopoietic transition as 
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described previously72,87. Briefly, cells (CD34+CD43- or CD34+CD43-CD73-CD184- cells) 

were aggregated overnight at a density of 2x105 cells/mL in StemPro-34 media supplemented 

with L-glutamine (2 mM), ascorbic acid (1 mM), monothioglycerol (MTG, 4 ×10−4 M; Sigma-

Aldrich), holo-transferrin (150 μg/mL), TPO (30 ng/mL), IL- 3 (30 ng/mL), SCF (100 ng/mL), 

IL-6 (10 ng/mL), IL-11 (5 ng/mL), IGF-1 (25 ng/mL), EPO (2 U/mL), VEGF (5 ng/mL), bFGF 

(5 ng/mL), BMP4 (10 ng/mL), FLT3L (10 ng/mL), and SHH (20 ng/mL). Aggregates were 

spotted onto Matrigel-coated plasticware and were cultured for additional 9 days. Cultures were 

maintained in a 5% CO2/5% O2/90% N2 environment. Hematoendothelial cultures were 

harvested by trypsinization and assessed for hematopoietic potential by Methocult.  

OP9-DL4 co-culture assay for T-lymphoid potential. OP9 cells expressing Delta-like 4 (OP9-

DL4) were generated and described previously125,126. Isolated CD34+ CD43- cells were added to 

individual wells of a 6-well plate containing OP9-DL4 cells, and cultured for 21-28 days as 

described previously29. Briefly, cells were cultured in a-MEM supplemented with 20% FBS, 

SCF (30ng/mL, first 5 days only), FLT3L (5 ng/mL) and IL-7 (5 ng/mL). Every four days co-

cultures were transferred onto fresh OP9-DL4 cells by vigorous pipetting and passaging through 

a 40 µm cell strainer. Limiting dilution assays of CD34+CD43- cells was performed on either 

control (WT) or CDX4-/Y (KO) hPSCs. 160,000 (n = 2), 100,000 (n = 2), 30,000 (n = 4), 10,000 

(n = 4), 3,000 (n = 4), 1,000 (n = 4), 300 (n = 4) or 100 (n = 4) cells were plated for T-lymphoid 

assay (biological n = 3). Cultures were assayed following 28 days of co-culture, as above, for the 

presence of a CD45+CD4+CD8+ population. Progenitor frequency was calculated by Extreme 

Limiting Dilution Analysis (http://bioinf.wehi.edu.au/software/elda/)127. 

Gene expression analyses. Total RNA was prepared for whole-transcriptome sequencing using 

the Clontech SMARTer kit, and was sequenced with an Illumina HiSeq 2500 with 1x50 single 
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reads. Reads were uploaded to the Sequence Read Archive and are available as part of 

BioProject PRJNA35244, accession number SRP093125. RNA-seq data was analyzed using the 

kallisto/sleuth software suite (https://github.com/pachterlab/sleuth)128. qRT-PCR was performed 

as previously described85. Briefly, total RNA was isolated with the RNAqueous RNA Isolation 

Kit (Ambion), followed immediately by transcription into cDNA using random hexamers and 

Oligo (dT) with Superscript III Reverse Transcriptase (Invitrogen). Real-time quantitative PCR 

was performed on a StepOnePlus thermocycle (Applied Biosystems), using Power Green SYBR 

mix (Invitrogen). Primer sequences are available upon request. Gene expression was evaluated as 

DeltaCt relative to control (ACTB).  

Globin analyses. Following 10 days (EryP-CFC) or 14 days (BFU-E) of erythroblast maturation 

in Methocult (StemCellTechnologies), individual colonies were picked my mouth pipetting with 

a capillary tube. 10 colonies were pooled per biological replicate and assessed for HBG and HBE 

expression by qRT-PCR, as previously described85. 

Flow Cytometry and Cell Sorting. The antibodies used are all as previously described29,85,87. 

KDR (clone 89106), CD4 (clone RPA-T4), CD8 (clone RPA-T8), CD34-APC (clone 8G12), 

CD34- PE-CY7 (clone 4H11), CD43 (clone 1G10), CD45 (clone 2D1), CD56 (clone B159), 

CD73 (clone AD2), CD184 (clone 12G5) and CD235a (clone HIR-2). All antibodies were 

purchased from BD Biosciences (San Diego, CA) except CD34-PECY7 purchased from 

eBioscience, CD184 purchased from Biolegend and KDR purchased from R&D systems. Cells 

were sorted with a FACSAria™II (BD) cell sorter and analyzed on a LSRii (BD) cytometer. 
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2.3 Results and discussion  

2.3.1 Mesodermal CDX4 expression is specific to definitive hematopoietic 

specification  

Given that our hPSC differentiation system gives rise to populations of mesoderm harboring 

exclusively primitive or exclusively definitive hematopoietic progenitors (Figure 2.1A)85  we 

asked whether these populations could identify which transcription factor(s) regulate definitive 

hematopoietic specification within early mesoderm. We isolated by FACS KDR+CD235a− and 

KDR+CD235a+ mesoderm, generated by CHIR99021 or IWP2 treatment, respectively (Figure 

2.1B)85  and performed whole-transcriptome expression analyses. Differential gene expression 

analysis128  revealed significant enrichment of the CDX and HOX genes within definitive 

hematopoietic mesoderm (Figure 2.1C, Figure 2.3). CDX1, CDX2, and CDX4 were all highly 

expressed in definitive, but not primitive, hematopoietic mesoderm, and have been previously 

identified as being expressed during hPSC-derived definitive hematopoietic specification.118 

Interestingly, qRT-PCR analyses of each gene over the first 6 days of differentiation revealed 

that CDX1 and CDX2 are expressed within 24 hours of differentiation, whereas CDX4 was 

instead upregulated twofold at the time of CHIR99021 treatment (Figure 2.1D). CDX expression 

immediately decreased following CHIR99021 removal. This suggested that CDX1 or CDX2 may 

not specifically regulate definitive hematopoietic progenitor specification, but instead regulate 

mesendoderm specification, and thus may affect the emergence of both programs, whereas 

CDX4 expression correlates with definitive hematopoietic progenitor specification by WNT 

signaling. 

In addition to WNT signaling, differentiation cultures at this stage employ the use of BMP4 and 

basic fibroblast growth factor (FGF)85,87  both of which contribute to the expression of CDX 
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genes in early mesoderm.84,108  Although inhibition of BMP4 signaling with recombinant 

NOGGIN caused a complete block in mesoderm formation (not shown), the inhibition of basic 

FGF signaling with PD173074 at the same time as CHIR99021 treatment led to the emergence of 

a CD34+CD43− population that lacked a distinct CD73−CD184− HE (Figure 2.1E). 87,129  

Interestingly, FGF receptor inhibition (FGFRi) had no effect on the expression of CDX1 or 

CDX2, but did repress CDX4 expression (Figure 1F). Collectively, these results suggested that 

CDX4 is a relevant transcriptional target during human definitive hematopoietic specification. 

2.3.2 CDX4 is required for efficient human definitive hematopoietic 

specification 

In both mouse and zebrafish models, cdx4 deficiency has been implicated in the regulation of 

embryonic hematopoiesis.84,112-114,130,131Although Cdx4−/− mice showed no significant definitive 

hematopoietic defects,115  zebrafish exhibit a moderate decrease in definitive hematopoietic 

potential that was significantly enhanced when combined with cdx1 knockdown112,130,131  

suggesting species-specific usage of different Cdx genes during definitive hematopoietic 

specification. As we observed definitive hematopoietic mesoderm-specific expression of CDX4 

(Figure 2.1C), we reasoned that the role of CDX4 in human embryonic hematopoiesis may be 

elucidated using our hPSC model system, by monitoring the ontogeny of primitive and definitive 

hematopoietic progenitors from early mesoderm.85 

We first generated an inducible expression system using the AAVS1 locus123  to allow for CDX4 

expression at any stage of differentiation. Exogenous CDX4 expression from days 2 to 3 of 

differentiation (Figure 2.4A) repressed the specification of the primitive hematopoietic 

progenitors, as we observed a dramatic decrease in the emergence of CD43+ primitive 

hematopoietic progenitors132  (Figure 2.2A), and a 10-fold decrease in detectable EryP-CFCs 
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(Figure 2B). Because this resembled CHIR99021 treatment of differentiation cultures,85  which 

causes CDX4 expression (Figure 2.1C-D), we asked whether induction of CDX4 expression 

during the same window of time would yield a similar effect as CHIR99021 treatment, resulting 

in an enrichment of definitive hematopoietic specification.85  Therefore, differentiation cultures 

did not have WNT signaling manipulated, so as to allow for the specification of both programs 

(Figure 2.1A). Under these conditions, the definitive hematopoietic progenitors were still 

specified with doxycycline treatment, because functional CD34+CD43−CD73−CD184− HE87,129  

was still specified with similar efficiency to control conditions (Figure 2.2C-D, Figure 2.4B). 

However, CDX4 overexpression caused a functional increase within this population, as indicated 

by a fivefold increase in definitive erythroid progenitors, similar to that observed following 

CHIR99021 treatment (Figure 2.2E). Collectively, these observations indicate that mesodermal 

CDX4 expression recapitulates WNT activation during mesoderm specification85  resulting in 

definitive hematopoietic specification and primitive hematopoietic repression. 

We next used a CDX4 knockout (CDX4−/Y) hPSC line, which completely lacked WT CDX4 

expression, whereas CDX1 and CDX2 were still expressed (Figure 2.2F, Figure 2.4D). Under 

all differentiation conditions (Figure 2.1A), CDX4−/Y cultures gave rise to approximately 

threefold more CD43+ cells (Figure 2.2G). CDX4−/Y hPSCs gave rise to threefold more EryP-

CFCs in the absence of WNT signaling (Figure 2.2H), likely due to the complete absence of 

CDX4 expression in comparison with control IWP2-treated cultures (Figure 2.2F). CHIR99021 

treatment still repressed primitive hematopoiesis, suggesting other β-catenin transcriptional 

targets also repress primitive hematopoietic specification. In contrast, when CHIR99021-derived 

definitive CD34+CD43− cells were assessed for hematopoietic potential, the CDX4−/Y cells 

exhibited an approximately sevenfold reduction in HBG-expressing BFU-E potential, and a 
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fourfold decrease in myeloid potential (Figure 2.2I, Figure 2.4C). Further, limiting dilution 

analyses of T-lymphoid potential revealed a fivefold decrease in lymphoid potential in CDX4−/Y 

CD34+ cells (Figure 2.2J), indicating a broad decrease in multilineage definitive hematopoietic 

potential. 

To determine the cause of this, we asked whether CDX4−/Y hPSCs have either defective HE 

specification or an impaired endothelial-to-hematopoietic transition. CDX4−/Y CD34+CD43− 

cells exhibited an average fivefold reduction in the specification of CD73−CD184− HE (Figure 

2.2K-L), indicating they have impaired definitive hematopoietic specification. However, this HE 

population remained functional, giving rise to definitive BFU-E with similar efficiency to control 

hPSCs (Figure 2.2M). Because both CDX1 and CDX2 were still expressed under these 

conditions (Figure 2.2F), it is possible that either may be redundantly106  contributing to 

definitive hematopoietic specification in the absence of CDX4, similar to that observed in 

zebrafish.115  Collectively, these results establish that CDX4 is a key regulator of specifying 

human definitive hematopoietic progenitors within mesoderm, by regulating the specification of 

HE, and thus provides a mechanistic basis for WNT-mediated definitive hematopoietic 

progenitor specification.85 

CDX/HOX expression has been suggested to be essential for definitive hematopoietic 

specification from hPSCs.118,133 Together, our data demonstrate the importance of CDX4 

expression for human definitive, but not primitive, hematopoietic progenitor specification within 

mesoderm, prior to HE emergence. With this insight, it will be possible to interrogate the 

intrinsic and extrinsic regulators of human definitive hematopoietic specification, so as to 

ultimately increase hPSC-derived definitive hematopoiesis for regenerative medicine 

applications. 
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Figure 2.1: CDX4 is expressed at the onset of definitive hematopoietic 

progenitor specification within mesoderm. 

(A) Differentiation schematic and hematopoietic progenitor identification. hPSCs are 

differentiated using a serum-free, stroma-free approach, with stage-specific application of WNT 

signal manipulation. Inhibition of WNT signaling within mesendoderm with 3 μM IWP2 leads to 

the generation of KDR+CD235a+ mesodermal population, which gives rise to CD43+ primitive 

hematopoietic progenitors, whereas WNT activation with 3 μM CHIR99021 generates a 
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KDR+CD235a− mesodermal population that gives rise to CD34+CD43−CD73−CD184− HE. No 

manipulation of WNT signaling leads to a heterogeneous population of primitive and definitive 

hematopoietic progenitors. (B) Representative cell-sorting strategy employed for RNA-seq 

analyses. Mesoderm harboring definitive (blue) or primitive (red) progenitors were isolated by 

FACS. (C) Heatmap of CDX gene expression within different mesodermal populations, as 

determined by RNA-seq. n = 4. (D) qRT-PCR analyses of CDX1 (top), CDX2 (middle), and 

CDX4 (bottom) expression during the first 6 days of differentiation as in panel A. Period of 

WNT manipulation is shaded in light blue. n ≥ 3 mean ± standard error of the mean (SEM). 

Student t test compared with DMSO control: *P < .05. (E) Representative flow cytometric 

analysis of CD73 and CD184 expression, gated on CD34+CD43− cells following either 

CHIR99021 (CHIR) treatment or CHIR + 1 μM PD173074 (FGFRi) treatment as in panel A. (F) 

qRT-PCR analyses of CDX1 (left), CDX2 (middle), and CDX4 (right) expression on day 3 of 

differentiation, following treatment with either vehicle (DMSO), CHIR99021 (CHIR), IWP2, or 

PD173074 (FGFRi) as in panel A. Normalized to CHIR treatment. n = 3 mean ± SEM. Student t 

test compared with CHIR treatment: *P < .05; **P < .01. BMP4, bone morphogenetic protein 4; 

DMSO, dimethylsulfoxide; EPO, erythropoietin; IGF-1, insulin-like growth factor 1; IL-6, 

interleukin-6; qRT-PCR, quantitative reverse transcription polymerase chain reaction; RNA-seq, 

RNA sequencing; SCF, stem cell factor; TPM, transcripts per million; VEGF, vascular 

endothelial growth factor. 
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Figure 2.2: Mesodermal CDX4 expression is critical for efficient definitive 

hemogenic endothelial specification.  

(A-E) Analyses of primitive and definitive hematopoietic potential following doxycycline-

inducible CDX4 expression via the AAVS1 locus. (A) Representative flow cytometric analysis 

of CD34 and CD43 expression on day 9 of differentiation, following IWP2 and doxycycline 

treatment from days 2 to 3 of differentiation. (B) Normalized EryP-CFC potential at day 9 of 

differentiation as in panel A. n = 3 mean ± SEM. Student t test: ***P < .001. (C) Representative 

flow cytometric analysis of CD73 and CD184 expression within CD34+CD43− cells obtained on 

day 8 of differentiation, following DMSO treatment, with or without doxycycline, from days 2 to 

3 as in Figure 1A. (D) Quantification of CD73−CD184− HE as in panel C. n = 4. Student t test: P 

> .05. (E) Quantification of definitive erythroid burst forming unit (BFU-E) potential from 1000 

CD34+CD43−CD73−CD184− hemogenic endothelial progenitors, following 9 days of hemato-

endothelial culture to promote the endothelial-to-hematopoietic transition. n = 3 mean ± SEM. 

Student t test compared with DMSO: *P < .05. (F-M) Analyses of primitive and definitive 

hematopoietic potential from CDX4−/Y hPSCs. (F) qRT-PCR analysis of CDX1, CDX2, and 

CDX4 expression on day 3 of differentiation within wild-type (WT) and CDX4−/Y (knockout 

[KO]) hPSCs, following CHIR99021 or IWP2 treatment as in Figure 1A. n = 4 mean ± SEM. 

Student t test: *P < .05; ***P < .001. (G) Representative CD34 and CD43 flow cytometric 

analyses on day 9 of differentiation following WNT manipulation from days 2 to 3 as in Figure 

1A. (H) Primitive hematopoietic potential within day 9 differentiation cultures of WT and 

CDX4−/Y (KO) hPSCs, following WNT manipulation as in Figure 1A. n ≥ 4 mean ± SEM. 

Student t test compared across WT and KO, per condition: **P < .01; ***P < .001. (I) 

Quantification of definitive erythro-myeloid colony-forming potential from CHIR99021-derived 

CD34+ progenitors, following 9 days of hemato-endothelial culture to promote the endothelial-
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to-hematopoietic transition. Cultures were treated with CHIR99021 from days 2 to 3 as in Figure 

1A. Normalized to 10 000 CD34+CD43− day 8 input cells. n ≥5 mean ± SEM. Student t test: *P 

< .05. (J) Representative flow cytometric analysis of T-lymphoid potential of WT and CDX4−/Y 

(KO) hPSCs, under limiting dilution conditions. Shown is T-lymphoid analyses following 28 

days OP9−DL4 coculture under T-lymphopoiesis promoting conditions. Input population shown 

is 10 000 CD34+ progenitors. Limiting dilution analyses indicate WT CD34+ cells possess 

lymphoid progenitors at a 1:3318 frequency, and KO cells at 1:18 508 frequency. n = 3. P = 

.00224. (K) Representative flow cytometric analysis of CD73 and CD184 expression within 

CD34+CD43− cells obtained on day 8 of differentiation, following CHIR99021 treatment from 

days 2 to 3 as in Figure 1A. (L) Quantification of CD73−CD184− HE as in (K). n > 6. Student t 

test: ***P < .001. (M) Normalized definitive BFU-E potential from 

CD34+CD43−CD73−CD184− hemogenic endothelial progenitors, following 9 days of hemato-

endothelial culture to promote the endothelial-to-hematopoietic transition. n = 5 mean ± SEM. 

Student t test: P > .05. CFU-E, erythroid colony-forming unit; DOX, doxycycline; n/s, not 

significant. 
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Figure 2.3: HOX gene expression differences in mesoderm  

Heatmap of HOX gene expression within different mesodermal populations, as determined by 

RNA-seq. Populations obtained as in Figure 1B. TPM: Transcripts Per Million. n = 4. 
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Figure 2.4: Characterization of iCDX4 and CDX4y/- hPSC lines 

(A) qRT-PCR analysis of CDX4 expression following 2 µg/mL doxycycline treatment from days 

2-3 of differentiation, as in Figure 1A. n = 3 mean ± SEM. Students t-test compared between no 

doxycycline and doxycycline treated cultures * p < 0.05. (B) T-lymphoid potential of the 

CD34+CD43- populations derived from day 8 of differentiation cultures, following treatment or 

not with doxycycline from days 2-3 of differentiation. Representative CD4 and CD8 flow 

cytometric analysis following 21+ days OP9-DL4 co-culture under T-lymphopoiesis promoting 

conditions. Gated on CD45+CD56- population. n = 2. (C) Ratio of HBG/HBE expression, as 

determined by qRT-PCR, within erythroid colonies derived as in (Figure 2H; “EryP”) and 

D 
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(Figure 2I; “EryD”). n = 4 mean ± SEM. Students t-test * p < 0.05. (D) Genome browser 

snapshot of the CDX4 locus, showing next generation sequencing of  CDX4y/- hPSCs  (in red)  

compared to WT (in blue), demonstrating the 77 bp deletion as a result of CRISPR Cas9 

cleavage.
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Chapter 3: Targets of CDX4 and their role in 

promoting definitive hematopoietic 

specification and repression of cardiogenic 

fate 
 

3.1 Abstract  
After having demonstrated that CDX4 is a critical regulator of definitive hematopoiesis, an 

interesting question remained: what gene expression changes are resulting from activation of 

WNT/FGF dependent CDX4 expression, in the context of definitive hemogenic mesoderm? 

CDX4 in human and animal models is generally known act upstream of HOX genes, in particular 

HOXA genes112,113,118,131 in hematopoietic development. I hypothesized that CDX4 is binding 

directly to target genes responsible for the specification of hemogenic endothelium (HE), such as 

in the HOXA cluster, which has shown to be critical for HE117 and HSC function116,118. In order 

to find these transcriptional targets of CDX4, I utilized a CDX4y/-, iCDX4 human pluripotent stem 

cell (hPSC) line, which overexpresses 3xFLAG-tagged CDX4 upon doxycycline (DOX 

induction, to perform paired RNAseq and chromatin immunoprecipitation sequencing (ChIPseq) 

on 3xFLAG-CDX4 bound genomic DNA. The sequencing revealed areas of CDX4 binding 

during definitive hematopoietic specification in mesoderm, but also allowed me to explore 

CDX4 binding in the context of primitive hemogenic mesoderm, as I have shown that CDX4 

expression represses the primitive program. By using FACS, I isolated each of these populations: 

KDR+CD235a-CD184- definitive, retinoic acid independent hemogenic mesoderm, 

KDR+CD235a-CD184+ retinoic acid dependent hemogenic mesoderm, and KDR+CD235a+ 

primitive hemogenic mesoderm with or without CDX4 expression by manipulating DOX during 
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mesoderm formation. As expected, there was broad binding across the HOXA cluster in both 

definitive hemogenic mesoderm’s (CD184-/+), but interestingly, there was population specific 

HOXA5/7/9 gene expression as a result of CDX4 induction. CYP26A1 were also identified as 

being bound upregulated by CDX4, which suggests influence on retinoic acid signaling 

respective. CDX4 was also found to be activating CDX2, possibly in a feedback loop within 

KDR+CD235a+ primitive hemogenic mesoderm. Intriguingly, TBX20, an important cardiac 

transcription factor, was found to be significantly downregulated and CDX4-bound in all three 

populations as a result of CDX4 expression, suggesting that CDX4 expression results in 

suppression of cardiac lineages. Other cardiomyocyte related genes, such as MESP1 and NKX2-

5, were also suppressed but not CDX4 bound in KDR+CD235a+ mesoderm, which has been 

identified as a the progenitor of ventricular cardiomyocytes in previous work134. Further studies 

utilizing WT and CDX4y/-, iCDX4 lines differentiated under cardiac promoting conditions 

revealed that loss of CDX4 lead to a large increase in cardiomyocyte formation and rescue of 

CDX4 expression during mesoderm formation reversed this increase. These data revealed that 

CDX4 is regulating HOXA genes as expected within hemogenic mesoderm, but is also 

suppressing the specification of cardiac progenitors, through the downregulation of 

cardiomyocyte transcription factors like TBX20. 

3.2 Methods  
Culture and differentiation. Hematopoietic differentiations and functional assays were 

performed according to the methods in Chapter 2, with the addition of SB431542 (6 μM) 

alongside CHIR99021118.  

For cardiac promoting conditions, alterations to the base protocol were adapted from Lee et al.134 

Briefly, after aggregation of dissociated hPSCs, cells were suspended in SFD media the same as 
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hematopoietic conditions, except containing BMP-4 (5 ng/mL) and Activin A (10 ng/mL) at 

indicated concentrations and without addition of CHIR99021 or IWP2. Following 72 hours of 

differentiation, cells were washed and resuspending in StemPro-34 media as hematopoietic with 

differentiations, except with only VEGF (10ng/mL) and IWP2 (3 µM) for 48 hours. Cells were 

then washed, and media exchanged every 3 days until day 12, when cells were transitioned to 5% 

CO2 normoxia environment. Media was continued to be exchanged every 3 days, until analysis 

was performed at day 20.  

Genome engineering of hPSCs. Generation of the CDX4y/-, iCDX4 recue line was generated 

using the same strategy as the iCDX4 found in Chapter 2, but into the already established 

CDX4y/- KO line also detailed in Chapter 2. 

scRNA-seq analyses. Cells from each day 3 differentiation culture condition were methanol-

fixed as previously described135. Libraries were prepared following the manufacturer’s 

instruction using the 10X Genomics Chromium Single Cell 3′ Library and Gel Bead Kit v2 (PN-

120237), Chromium Single Cell 3′ Chip kit v2 (PN-120236), and Chromium i7 Multiplex Kit 

(PN-120262). 17,000 cells were loaded per lane of the chip, capturing >6000 cells per 

transcriptome. cDNA libraries were sequenced on an Illumina HiSeq 3000. Sequencing reads 

were processed using the Cell Ranger software pipeline (version 2.1.0). Using Seurat136 (version 

3.0.2) implemented in R (version 3.5.1), the dataset was filtered by removing genes expressed in 

fewer than 3 cells, and retaining cells with unique gene counts between 200 and 6000. The 

remaining UMI counts were log normalized and mitochondrial UMI counts were regressed out. 

Principal component analysis was used to generate t-distributed stochastic neighbor embedding 

(t-SNE) and uniform manifold approximation and project (UMAP) plots. Monocle137 (version 

2.10.1) was used for pseudotime analysis. First size factors and dispersions were estimated, and 
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then genes were filtered with expression 10 cells. Doublets were removed by filtering out cells 

with 24813 total RNA. Cell clustering and trajectory construction were performed using an 

unsupervised approach. 

Western Blotting. Cells were harvested and then lysed in RIPA-LS buffer containing protease 

inhibitors with sonication on ice. After lysis, protein was quantified using BCA quantification 

with a BSA standard curve and ~20 μg of protein was boiled in loading buffer and loaded per 

sample for PAGE. The protein was then transferred via semi-dry method onto PVDF membrane. 

After blocking with BSA, the membrane was staining overnight at 4C using Flag M2 and 

αTubulin antibody. After washing with BSA, the membranes were then probe with LI-COR 

IRDye secondary antibodies at 4C for 1 hour, followed by additional BSA washes. Membranes 

were imagined on a LI-COR Odyssey. 

Paired ChIP/RNAseq experiments. After relevant cell types were isolated 0.75x106 cells per 

sample were processed according to the beginning steps of Chipmentation138. Briefly, after snap 

freezeing at -80C, cells were washed and then formaldehyde fixed at 1% while rocking for 10 

minutes at room temperature and quenched by adding glycine to 0.125 M concentration for an 

additional 5 minutes at room temp. After centrifugation, cells were resuspended in sonication 

buffer (0.25 % SDS) with protease inhibitors and subjected to Covaris microtube sonication, 

producing 200-700 bp fragments as assessed by Tapestation analysis. Cells were then diluted 

with 1:1.5 with equilibration buffer (10mM Tris, 233 mM NaCl, 1.66 % TritonX-100, 0.166 % 

DOX, 1 mM EDTA, with protease inhibitors). Cells were then IP’d rotating overnight at 4C in 

RIPA-LS + inhibitor with anti-FLAG antibody and the next day combined with Protein G 

Dynabeads for 4 hours. After using magnetic separation to remove the supernatant, the beads 

were then successively washed in twice in RIPA-LS, twice in RIPA-HS, twice in RIPA-LiCL, 
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and then once in 10 mM Tris pH8. To elute the chromatin, beads were resuspended in ChIP 

elution buffer with proteinase K and incubated at 55C for 1 hour and 65C for 6-10 hours. The 

supernatant was then transferred to a DNA lo-bind tube, followed by a SPRI bead DNA cleanup 

and sequencing performed by core facility. Total RNA was prepared for whole-transcriptome 

sequencing using the Clontech SMARTer kit using between 0.75-2.5x105
 cells as input. Both 

ChIP and RNAseq samples were sequenced on an Ilumina Novaseq S4 XP with 2x150 reads. 

Reads from both sample sets was aligned to hg38 reference using the STAR aligner139, for 

RNAseq reads were counted using Subread140 and ChIP peaks were called using MACS2141.       

Gene Expression analyses. RT-qPCR was performed as described in Chapter 2. 

Flow Cytometry and Cell Sorting. Flow cytometry was performed for hematopoietic 

differentiations as previously described, using methods from Chapter 2. Intracellular staining 

for CTNT was performed as previously described134; briefly, aggregates on day 20 were 

dissociated using Collagenase II (0.5mg/ml) overnight, followed by 8 minute Trypsin (0.25%) 

incubation at 37C, halted with 5% FCS in PBS. Cells were then fixed for 15 minutes at 4C with 

4% PFA in PBS and washed, followed by permeabilization with 90% methanol for 20 minutes at 

4C. Cells were then washed, stained with primary antibody at 4C overnight and then washed and 

stained with secondary antibody. PDGFRα antibody (clone αR1) was obtained from BD 

PharMingen and cTNT (clone 13-11) was obtained from ThermoFisher. 

3.3 Discovery of a retinoic-acid dependent hematopoietic 

program in hPSCs  
In order to better understand the exact cell types that exist within the definitive hemogenic 

mesoderm produced within our culture system, our lab performed single cell RNAseq of bulk 
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cultures under CHIR99021 and SB431542 (a TGFβ inhibitor, shown to improve CDX/HOXA 

expression118) treatment at day 3 of differentiation. After processing through the 10X Genomics 

Chromium system and Illumina sequencing, approximately 6,000 unique cells were obtained 

after filtering out cells with low read count. To identify these cell types and understand the 

relationships between then, the monocle2 software137 was utilized to generate a pseudotime 

trajectory in an unbiased manner (Figure 3.1A, adapted from Luff et al. under review142). This 

trajectory orders cells based on similarities in gene expression into a low dimensional space to 

allow for inference on possible cells state and progenitor/progeny relationships. Each of the 

‘branches’ determined by the algorithm were assessed for their cells state by looking for 

common germ layer markers, leading to the identification of pluripotent cells (SOX2/NANOG), 

ectoderm (TFAP2A, DLX5, KRT7), mesendoderm (SOX2/T) endoderm (FOXA2, SOX17), and 

mesoderm (KDR). The cells types farthest along in psuedotime are ectoderm, endoderm, and 

mesoderm, following well understood conventions on gastrulation and the development of the 

different germ layers143. 

One of the more interesting observations from this pseudotime analysis is that there are two 

distinct mesoderm branches formed that diverge as pseudotime progresses. Branchpoint analysis 

of these two mesodermal populations revealed differential expression of several genes as the 

cells progressed from pluripotency to either mesoderm populations (Figure 3.1B, Luff et al.142). 

CDX4 and CYP26A1 expression appears to be maintained in expression in one branch, where 

CXCR4 (CD184) and ALDH1A2 are expressed in the other opposing branch. CYP26A1 and 

ALDH1A2 are important regulators of retinoic acid signaling. Retinoic acid signaling has been 

known to play critical roles in embryonic development, in particular in the context of 

neurogenesis, eye development, and limb-bud fomation144-146, but also has been implicated has 
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having a crucial role in the formation of the HSC147. Retinoic acid signaling depends on 

ingestion of Vitamin A (retinol) which is converted first to retinal after transport into the cytosol 

by various retinol dehydrogenase (RDH) and then converted to all trans retinoic acid (ATRA) by 

alcohol dehydrogenase enzymes (ALDH); ATRA is then bound by RA receptors (RARs) and 

retinoid X receptors (RXRs), which translocate to the nucleus and affect gene transcription146. 

ATRA is then degraded via a cytochrome P450 (CYP26) enzymes, leading to a halt in 

RAR/RXR based gene transcription. 

The presence of a high ALDH1A2, low CYP26A1 population, that could be segregated by 

CXCR4 (CD184) lead the hypothesis that retinoic acid signaling might be playing a role in this 

particular mesodermal population. Initial flow cytometry experiments demonstrated that there 

was KDR+CD235a-CD184+ mesoderm at day 3 within our CSB treated differentiations, 

confirming these bioinformatic observations (Figure 3.1C, Luff et al.142). FACS isolation of 

either KDR+CD184-/+ populations, followed by reaggregation and continued culture for another 

five days under previous established conditions72 lead to the production of CD34+ endothelium 

from both CD184- (P1) and CD184+ (P2) cells. To test for hematopoietic potential, these CD34+ 

cells were FACS isolated and either seeded onto OP9-DL4 stroma to test for lymphoid/T-cell 

potential29 or into an EHT culture87 followed by plating into methylcellulose to test for 

erythroid/myeloid potential. No T-cells were found when CD184+ derived endothelium was 

tested for lymphoid potential, while robust CD4/8+ T-cells were derived from CD184- 

mesoderm. Similarly, only small numbers of mainly myeloid colonies were derived from 

CD184+ mesoderm, whereas there were large numbers of erythroid and myeloid colonies formed 

from CD184- mesoderm (Figure 3.1D, Luff et al.142). This observation correlated with previous 

observations of the dependence of definitive HE on mesodermal expression of CDX4, which is 
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more highly expressed within CD184- mesoderm. However, with the knowledge that CD184 

expression correlated with ALDH1A2 expression, it was hypothesized that CD184+ mesoderm 

might require the addition of retinol (ROH) for specification of hematopoietic progenitors. 

Addition of ROH to the culture after FACS isolation (P2’) again lead to the formation of CD34+ 

endothelium from CD184+ mesoderm, but was able to unlock T-cell/lymphoid potential from 

this endothelium. Similarly, ROH treated CD184+ mesoderm was able to be produce CD34+ 

endothelium that give rise to robust erythroid and myeloid colonies after the EHT. Addition of 

ROH to CD184- hemogenic mesoderm did not significantly affect the erythroid, myeloid, or 

lymphoid potential, suggesting that this population is largely independent of retinoic acid 

signaling, correlating with its low levels of ALDH1A2 and higher level of CYP26A1 expression. 

The discovery of this novel ROH dependent hemogenic mesoderm raised interesting questions in 

terms of the genetic regulation behind the emergence of these populations. CDX4 expression is 

heavily downregulated in CD184+ mesoderm, whereas its expression is maintained in CD184- 

mesoderm. Does CDX4 expression promote a ROH independent hemogenic mesoderm or is it 

necessary for the emergency of a ROH dependent hemogenic mesoderm? Are there more critical 

gene expression differences that segregate these two populations and is it possible that CDX4 

could regulating gene expression in different ways in these two populations? In order to answer 

these questions and better understand the precise genetic targets of CDX4 in these different 

hemogenic progenitors, genetic tools will be needed. 

3.4 Establishment of a CDX4-/y, iCDX4 rescue line 
After demonstrating the critical role that CDX4 plays in the specification of definitive hemogenic 

mesoderm and its suppression of the primitive program (Chapter 2)148, the stage specific role of 

CDX4 was not completely addressed by a CDX4-/y KO line or the doxycycline (DOX) inducible 
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iCDX4 line. The possibility of CDX4 expression impacting hematopoiesis at later stages of 

hematopoietic differentiation could not be entirely ruled out. To address whether mesodermal 

expression only of CDX4 would lead to the specification of hemogenic endothelium, a CDX4-/y, 

iCDX4 line was generated, combining the AAVS1-based123 DOX-inducible CDX4 with the 

endogenous CDX4y/- KO line. This genetic system allows for precise control of CDX4 

expression, as there is no endogenous expression and the DOX inducible AAVS1-CDX4 allows 

for tunable CDX4 expression. The exogenous CDX4 produced is triple tagged with a FLAG 

motif at the 5’ end, allowing for pulldown of CDX4 protein using anti-FLAG antibodies. This 

would allow for chromatin immunoprecipitation (ChIP) of CDX4-bound chromatin, to find 

where in the genome CDX4 is binding in different mesodermal populations. Commercial 

antibodies against human CDX4 showed poor binding affinity and could only be detected 

through overexpression of CDX4 (data not shown), necessitating the use a FLAG-tagged 

construct. Before ChIP could be performed, it was necessary to shown that 3xFLAG-CDX4 

protein can be efficiently expressed, detected, and immunoprecipitated.  

To establish that 3xFLAG-CDX4 could be efficiently expressed, protein was isolated from 

CDX4-/y, iCDX4 hPSC’s treated with or without 1 μg/ml of DOX and a western blot performed 

(Figure 3.2A). The detection of a large anti-FLAG band at ~42 kD was close to the expected 

size of CDX4 protein based on size estimates from commercially available antibodies and 

ExPASy149. Having established that 3xFLAG-CDX4 can be expressed and detected at the protein 

level, confirmation of effective immunoprecipitation (IP) was needed. Bulk day 3 differentiated 

CDX4-/y, iCDX4 hPSC’s were harvested for protein, which was then immunoprecipitated used 

anti-FLAG protein with magnetic beads. The flow-through from the IP was kept and run 

alongside the original lysates, confirming the initial presence of 3xFLAG-CDX4, as well as 
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pulldown of CDX4 (Figure 3.2B). Additionally, sonication conditions that yielded 100-500 bp 

fragments useful for next generation sequencing and were compatible with the buffers and cell 

types used was determined (Figure 3.2C). Finally, functional confirmation of the CDX4-/y, 

iCDX4 hPSC was obtained by induction of CDX4 during mesoderm formation and then 

functional assessment of erythroid and myeloid potential, as was done previously with the 

iCDX4 only line148. Hematopoietic methylcellulose colony forming assays (Figure 3.2D) 

revealed that mesoderm induction of CDX4 was able to increase the functional output of 

hemogenic endothelium, over non-induced, endogenous CDX4-/y KO. 

3.5 Finding CDX4 targets through ChIP/RNAseq 
Once the technical conditions for ChIP were found and CDX4-/y, iCDX4 hPSC’s were 

functionally confirmed, combined ChIP and RNAseq could be performed on the relevant 

mesodermal populations. Since a unique, retinol responsive KDR+CD235a-CD184+ hemogenic 

mesoderm was discovered through observations from our lab (Luff et al, in review142), analysis 

of this population and the potential role that CDX4 could play in its formation was of great 

interest. FACS isolation of both CD184- ROH independent and CD184+ ROH dependent 

definitive hemogenic mesoderm would allow for assessment of the role CDX4 in both of these 

populations simultaneously. Additionally, understanding how enforced mesodermal expression 

of CDX4 results in repression of the primitive program could yield insight into other key 

mesodermal regulators of definitive/primitive hematopoiesis. Answering these questions will 

require FACS isolation of three different populations: KDR+CD184- ROH independent, 

KDR+CD184+ ROH dependent, and KDR+CD235a+ primitive hemogenic mesoderms (Figure 

3.3A). Paired RNAseq of each of these populations in biological triplicate would allow for 

correlation of CDX4-bound chromatin with changes in gene expression, to rule out the 
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possibility of CDX4 binding, but not inducing transcription. A control population without 

DOX/CDX4 induction would serve as the control population for ChIP and RNAseq, creating 

technically paired samples, resulting in a total of six different populations. Because of the 

technical limitations of sorting large amounts of these mesodermal populations that are 

approximately ~30-40% of the total numbers of cells within the culture, a ChIP protocol that was 

designed to use a low input was (in part) adapted for this experimental design138. A target 

population of 0.75x106 cells was sorted for each ChIP replicate and between 0.75-2.5x105 sorted 

for each RNAseq replicated.  

After the ChIP was performed and the RNA extracted, the samples were submitted for a target of 

~30 million reads on an Illumina Novaseq with 150bp paired end reads. The ChIP samples were 

aligned to the hg38 reference using the STAR aligner139, and triplicate samples were combined 

to increase the read counts at any given locus and aid in peak calling. To find peaks where CDX4 

protein was bound, the program MACS2 was used to call peaks in CD184-, CD184+, and 

CD235a+ sets in comparisons to background reads provided by the no DOX control141. The 

RNAseq reads were aligned to hg38 reference using STAR139 and reads counted and assigned to 

genes through Subread140. Global analysis of regions of significant CDX4-bound regions was 

visualized using deepTools150, demonstrating that the majority of CDX4 binding in all three 

populations was just upstream of the transcriptional start site (TSS), as expected for a 

transcription factor (Figure 3.3B). Interestingly, the KDR+CD235a+ ChIP samples had more 

dispersed binding just downstream of the TSS when compared to either of the definitive 

hemogenic mesoderm (CD184-/+). This could possibly be due to the exogenous expression of 

CDX4 that is not normally found within this population, perhaps causing spurious binding 

beyond the TSS.  
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3.6 HOXA and retinoic acid processing genes are CDX4 

targets 
To find more precise targets of CDX4, significant peaks called by the MACS2 software were fed 

into GREAT analysis151, correlating peaks with the closest nearby genes. Within a shorter given 

range (5 kilobases upstream, 1 KB down), peaks could be associated with more than one gene’s 

TSS, otherwise longer-range interactions were captured by extending the range up to 1000 KB 

until the TSS of a gene was reached. Approximately 2105 genes were associated with a CDX4 

peak in the KDR+CD184- samples, 1435 genes for the KDR+CD184+ samples, and 8757 genes 

for the KDR+CD235a+ samples. To narrow down these large numbers of gene-associated peaks 

and determine which are potentially influencing transcription, changes in RNAseq for each 

sample set were cross referenced (RPKM > 1, fold change > 1.5, p value < 0.05) with these 

peaks. After this analysis, the CD184- samples had 15 CDX4 gene putative targets (up and 

downregulated), the CD184+ samples had 71 targets, and the CD235a+ samples had 892 putative 

targets (Table 1, top 10).  

Because of the established relationship of CDX and HOXA genes in hematopoietic 

context105,112,116,117,130,133, the HOXA cluster was examined first. Large numbers of significant 

peaks were found across the majority of the locus, in all three sample sets (Figure 3.4A), 

particular near HOXA4, 5, 7, and 9. Interesting, HOXA gene expression changes as a result of 

CDX4 induction was differential depending what type of hemogenic mesoderm it was expressed 

in (Figure 3.4B). Despite strong peaks near HOXA4, there was poor expression in all sample sets 

and did not change as a result of CDX4 induction (data not shown), while HOXA7 was induced 

in the CD184- mesoderm and HOXA5/7/9 were induced in the CD184+ mesoderm. The limited 

change in expression in the CD235a+ population was expected as this population has little to no 
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HOXA expression under basal conditions and the lack of WNT signaling might result in a lack of 

cofactors necessary to effect gene transcription.  

With the understanding that KDR+CD184-/+  hemogenic mesoderms have established 

differences in expression of retinol processing enzymes (Figure 3.1, Luff et al.142), genes that 

were important for ROH signaling were assessed as CDX4 targets. CYP26A1, the gene 

responsible for breaking down retinoic acid, was found to have a significant peak in the CD184+ 

mesoderm, but not in the other populations (Figure 3.4C). This correlated with a significant 

increase of CYP26A1 to comparable levels found in the CD184- retinoic acid independent 

hemogenic mesoderm, which were not significantly impacted by CDX4 induction (Figure 3.4D). 

Although the levels of CYP26A1 expression are still much lower in comparison to CD235a+ 

primitive hemogenic mesoderm, this suggests that CDX4 might be influencing the 

responsiveness of the CD184+ mesoderm to retinoic acid signaling.  

3.7 CDX4 is regulating CDX2 and TBX20 
Investigating the other genes found to be CDX4 targets within the CD184- mesoderm, where the 

highest levels of CDX4 expression are found endogenously, revealed that CDX2 was a target of 

CDX4. (Figure 3.5A), and RNAseq revealed a modest, but significant increase in CDX2 

expression as a result of CDX4 induction (Figure 3.5B). In the mouse embryo, exogenous 

expression of Cdx2 was found to bind to the Cdx4 promoter and induce Cdx4 expression through 

WNT mediated feedback152. Interestingly, significantly upregulation of CDX2 was not found in 

either CD184-/+ mesoderm, possibly because of already high levels of expression due to WNT 

activation, which is known to induce CDX expression153. This suggests there might be a CDX2-

CDX4 feedback loop, though CDX2 acting as a transcription factor for CDX4 has not been 

established in the context of human hemogenic mesoderm.   
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Looking at the CDX4 targets identified in the CD184- mesoderm, it was surprising to see 2 out of 

15 genes downregulated as a result of CDX4 induction, as well as having nearby CDX4 binding 

peaks. CDX genes are canonically transcription factors that lead to gene induction, though there 

might be some evidence of CDX genes acting as repressor in concert with epigenetic regulators 

such BRG1-SWI-SNF154, which has been known to occasionally act in a repressor role155. One of 

the two genes identified as CDX4 repressed was TBX20, an important cardiac transcription factor 

necessary for proper heart structure156,157. A significant peak for both CD184- and CD235a+ 

mesoderm was found downstream of TBX20 in the intron of another gene (Figure 3.5C), 

interestingly all three mesodermal populations also displayed a decrease in TBX20 expression as 

a result of CDX4 induction (Figure 3.5D). Although the same peak was not considered 

significant for the CD184+ mesoderm, this could be due to noise or variation in samples that lead 

to the MACS software as not calling it significant. This possible suppression of a cardiac 

transcription factor in a CD235a+ mesoderm is intriguing, as recent work has shown that 

ventricular cardiomyocytes arise from a CD235a+ mesoderm in an hPSC differentiation model 

system134. This is supported by studies in mouse embryos/embryonic stem cells158 as well as the 

zebrafish159 that show that Cdx1/2/4 gene expression negatively regulates cardiogenesis, 

resulting in disruptions in heart structure and decreased cardiac related gene expression. Since 

CDX2 was also upregulated through enforced CDX4 and both genes are implicated in 

downregulating various cardiomyocyte transcription factors, examination of the CD235a+ 

RNAseq alone revealed downregulation (but not CDX4 binding) for NKX2-5, MESP2, and 

interestingly GPYA (CD235a). NKX2-5 is a critical cardiac transcription factor160 and MESP1/2 

are known to mark mesoderm capable of cardiac specification92. Since these genes were not 
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bound by CDX4, the decrease due to enforced CDX4 expression (Figure 3.5E) is due to indirect 

effects from CDX4, possibly as a result of increased CDX2 expression.  

 

3.8 CDX4 expression leads to a decrease in cardiac 

specification 
Having discovered evidence that CDX4 expression in certain mesodermal populations leads to 

repression of several cardiomyocyte transcription factors, it became obvious to test whether 

mesodermal CDX4 expression could lead to a functional repression in the formation of cardiac 

progenitors. In order to test this hypothesis, both WT and CDX4y/-, iCDX4 hPSC’s were 

differentiated under established conditions for the specification of PDGFRα+CD235a+ 

ventricular cardiac mesoderm134. Mesoderm was specified from days 0-3 under very similar 

conditions as hemogenic mesoderm, but with lower levels of BMP4 (5 ng/ml) and higher levels 

activin A (ACTA, 10 ng/ml) and from days 3-5, treatment of the WNT inhibitor IWP2. On day 

5, PDGFRα and CD235a expression was assessed via flow cytometry demonstrating that WT 

and CDX4y/-, iCDX4 (with or without DOX from days 2-3) hPSCs were all capable of producing 

PDGFRα+CD235a+ cardiac mesoderm at ~30% efficiency (Figure 3.6A). Seeing no phenotypic 

differences in the mesoderm produced, qPCR analysis of bulk day 5 culture revealed that 

expression of TBX5, an important cardiomyocyte transcription factor161, was significantly 

reduced as a result of CDX4 expression during days 2-3 (Figure 3.6B). Interestingly, there was 

no difference in TBX20 or NKX2-5 expression at day 5, although DOX induced CDX4 

expression had already dropped to nominal levels, perhaps allowing for recovery of expression in 

these genes. Despite no functional differences in CD235a based on flow cytometry, there was a 

decrease in GYPA (CD235a) expression as a result of CDX4 induction. This could be due to a 
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long half-life of CD235a protein, which in some cell types could be up to 48hrs162, and might be 

reduced later in the differentiation. 

Further maturation of the cardiac differentiations to days 8-12 produced spontaneously beating 

embryoid bodies (EBs), indicating that cardiomyocytes were present. WT differentiations had 

sparse numbers of beating EBs, while the CDX4y/-, iCDX4 hPSC’s had a significantly higher 

amount, that was reduced when DOX was applied from days 2-3. While informative, this 

observation was not easily quantifiable, and the presence of cardiomyocytes can be better 

assessed through intra-cellular flow cytometry of cardiac specific troponin T (cTNT). On day 20, 

differentiations were harvested, fixed/permeabilized, and stained for CD90 (to exclude 

endothelium) and cTNT. WT hPSCs had a low level of cardiomyocytes present, at ~5% CD90-

cTNT+ cells at day 20 (Figure 3.7A), in comparison to ~30% CD90-cTNT+ cells in CDX4y/-, 

iCDX4 differentiations. This expansion in cTNT+ cardiomyocytes was reduced to WT levels 

after induction of CDX4 through application of DOX only from day’s 2-3 (Figure 3.7B), 

demonstrating that mesodermal CDX4 expression can suppresses the formation of 

cardiomyocytes, and its loss leads to their expansion. qPCR of day 20 differentiations also 

demonstrated a reduction in cTNT transcriptionally and expression of MYL2, a ventricular 

specific cardiomyocyte gene163 (Figure 3.7C). Collectively, these results demonstrate that 

mesodermal CDX4 leads to a repression in ventricular cardiomyocyte specification, likely 

directly through the repression of TBX20 and indirectly through CDX2.  

3.9 Discussion  
The data generated from these ChIP/RNAseq experiments yielded several insights into how 

CDX4 regulates the development of multiple mesoderm-derived lineages. As expected based on 

the literature surrounding CDX-HOXA genes in the context of hematopoiesis112,117-119,130,133, 
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CDX4 is indeed leading to induction of several HOXA genes, in particular medial HOXA genes 

(5/7/9). The medial HOXA genes have been demonstrated to be induced in both CD184- retinoic 

acid independent hemogenic mesoderm (HOXA7) and within CD184+ retinoic acid dependent 

mesoderm (HOXA5/7/9). This differential response to induction of CDX4 suggests that other cell 

intrinsic factors could be influencing which HOXA genes are being induced when CDX4 binding 

within the locus. The HOXA locus has complicated gene regulatory mechanisms that influence 

which genes are induced, generally in a colinear manner starting with HOXA1-HOXA13 in an 

anterior to posterior pattern within in the embryo105. This is thought, in part to be due to CTCF-

mediated looping that results in PRC-dependent gene silencing and further impacted by retinoic 

acid signaling164.  Since neither of these three mesodermal progenitor populations was exposed 

to ROH or retinoic acid before being harvested for sequencing, it is unlikely at this particular 

stage of development that ROH signaling is influencing the population specific HOXA gene 

expression.  

Based on the basal level of HOXA5 and HOXA9 expression in the KDR+CD184- uninduced 

CDX4y/-, iCDX4 mesoderm, it appears that CDX4 induction in the KDR+CD184+ mesoderm 

resulted in expression levels that match KDR+CD184- mesoderm. CYP26A1 expression was also 

induced to a similar level as the KDR+CD184- population, when CDX4 was enforced in the 

KDR+CD184+ mesoderm. These data suggest that when CDX4 is exogenously expressed within 

KDR+CD184+ retinoic acid dependent mesoderm, it takes on a HOXA/CYP26A1 gene 

expression profile similar to CD184- retinoic acid independent mesoderm. Although extensive 

functional characterization would be needed, this suggests CD184+ mesoderm could be 

converted into a ROH-independent hemogenic mesoderm, where the exogenous expression of 

CDX4 causes an override of the ROH-dependent program. Genetic-epistasis studies would be 
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needed to fully confirm the population-dependent nature of induction of HOXA5/7/9 by CDX4, 

which could be addressed through complementation of the CDX4y/- KO with inducible 

HOXA5/7/9 constructs.  

Perhaps the most unexpected gene target of CDX4 was TBX20, an important cardiac transcription 

factor156,157, which was consistently downregulated by CDX4 expression in all three mesodermal 

populations. The most striking CDX4 binding peak however, was the CD235a+ mesoderm, 

which having been shown to be the progenitors for ventricular cardiomyocytes134, leading me to 

hypothesize that CDX4 could be repressing the cardiomyocyte program. Having demonstrated 

that mesodermal CDX4 expression leads to the suppression of cardiac specification, it is still 

unclear if this suppression is due to a lack of contribution from KDR+CD235a+ mesoderm. In 

cardiac differentiations, day 5 is when CD235a+ cells are assessed, after WNT inhibition from 

days 3 to 5. It is unclear whether CD235a+ mesoderm maintains CD235a expression and gives 

rise to the CD235a+ cells found on day 5, or whether this is a different population that emerges 

later. FACS isolation of KDR+CD235a+ mesoderm on day 3, followed by continued culture 

could address the question of where ventricular cardiomyocyte progenitors are coming from on 

day 3.  

Another  unaddressed question in these experiments was the role CDX4 plays in the specification 

of atrial cardiomyocytes, which have been shown to be dependent on ROH-signaling for their 

formation134. Since CD184+ mesoderm has been shown by our lab to be dependent on ROH for 

the specification of hematopoietic progenitors, perhaps this population also contains the 

progenitors for atrial cardiomyocytes134. Again, FACS isolation of CD184+ mesoderm under 

cardiogenic conditions on day 3, followed by treatment of ROH could perhaps answer this; the 

role of CDX4 in ROH-dependent hematopoiesis has also not been established.    
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Figure 3.1: CD184 expression marks a retinol responsive, 

CDX4lo mesodermal population   
(from Luff et al., in review142) A. scRNAseq was performed on bulk culture treated with 

CHIR99021 and SB431542 (TGF  inhibitor) at day 3, after the specification of mesoderm to 

better assess the culture heterogeneity and to find hemogenic mesoderm. Briefly, the cells were 

dissociated via trypsin and fixed in methanol, before being processed via 10X Genomics 

Chromimum 3’ kit, capturing >6000 cells. The libraries were sequencing via an Illumina HiSeq 

3000 and processed via the Cell Ranger pipeline. The R package Monocle2 was used to generate 

an unsupervised pseudotime plot with branchpoints.  B. A heatmap of expression in cells across 

the peusdotime plot, ranging from population 1 (pluripotency) to either mesoderm populations 

identified after the branchpoint, showing an inverse correlation between CDX4 and CXCR4 

(CD184) and ALDH1A2. C. Flow cytometry of day 3 mesoderm after CHIR99021/SB431542 

treatment, showing two different mesodermal populations, CD184- (P1) and CD184+ (P2). 

FACS isolation of these two populations and continued culture shows both give rise to CD34+ 

endothelium populations, which there then assessed for lymphoid potential by further coculture 

with OP9-DL4 for 29 days and harvested for flow cytometry. D. All three populations were 

FACS isolated at day 8 (CD34+) and placed into an EHT assay for an additional 9 days and then 

plated into hematopoietic methylcellulose media. The numbers of colonies were then assessed 

after 12-14 days and the numbers were counted of burst forming units erythroid (BFU-E) and 

colony forming units (CFU) of erythroid (E), granulocyte (G), myeloid (M), and mixed 

granulocyte/myeloid (GM). n = 3, ** p < 0.01 via students t test of BFU-E. All Error bars SEM. 
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Figure 3.2: Doxycycline inducible, FLAG-CDX4 can be 

immunoprecipitated effectively in day 3 mesoderm 

A. Protein isolated from CDX4
y/-

, iCDX4 hPSCs was isolated and quantified, with or without 24 

hours of 2 μg/ml doxycycline (DOX) and 20 μg of protein was loaded to each well from the 

corresponding sample for SDS-PAGE. After western blot transfer, the membrane was blocked 

and probed with anti-Tubulin and ant-FLAG primary antibodies, IRDye secondary antibodies, 

and imaged on a LICOR Odyssey. B. Western blot of protein (20 μg) isolated from day 3 bulk 

differentiation from CDX4
y/-

, iCDX4 hPSCs for immunoprecipation (IP), which was preformed 

using anti-FLAG antibody and Protein G bound magnetic beads. DOX treatment was performed 

for 30 hours, from Day 2 to Day 3. Input denotes protein samples pre-IP, flow thru denotes the 

supernatant removed after the IP, and IP denotes the protein removed from the beads. CDX4 

bands highlighted in blue. C. TapeStation size analysis of genomic DNA fragments of day 3 

differentiated CDX4
y/-

, iCDX4 hPSCs after lysis and formaldehyde crosslinking. Far left lane 

ladder, middle control with no DOX added, and 2 μg/ml of DOX from days 2-3.   D. CDX4
y/-

, 

iCDX4 hPSCs were differentiated as described before with CHIR99021 (CHIR), with or without 

the addition of 2 μg/ml DOX from days 2 to 3 and continued until day 8 of culture. The cells 

were harvested and CD34+CD43-CD184-CD73- HE was sorted as previously described and 

plated and reaggregated for an additional 9 days in EHT culture. Cells were then harvested and 

plated in hematopoietic methylcellulose media for 10-12 days and the numbers were counted of 

burst forming units erythroid (BFU-E) and colony forming units (CFU) of erythroid (E) and 

myeloid (M) colonies. * indicates p < 0.05 via student’s T test between BFU-E, n =5, error bars 

SEM. 
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Figure 3.3: Finding CDX4 gene targets through 

ChIP/RNAseq 

A. Schematic of the different populations isolated for paired ChIP/RNAseq; the CDX4
y/-

, iCDX4 

hPSC line was cultured under four different conditions: CHIR99021/SB431542 treatment to 

induce definitive hemogenic mesoderm, with or without 1 μg/ml doxycycline (DOX)  from days 

2-3 to induce iCDX4, or IWP2 treatment to induce primitive hemogenic mesoderm, with or 

without DOX. KDR+CD235a-CD184- and KDR+CD235a-CD184+ cells were then FACS 

isolated from the definitive cultures and KDR+CD235a+ isolated from the primitive cultures. 

These six populations were isolated in biological triplicate and subjected to paired 

RNAseq/ChIPseq via anti-FLAG pulldown of CDX4 protein. B. After alignment of the ChIPseq 

reads, the software package deepTools was used to generate heatmaps of pulled down reads 

across all known genes in the genomes by taking each of the three populations respective 

populations and normalizing to the paired biological control (no DOX), where red indicates 

greater relative enrichment and blue low enrichment. The histogram plot at top was generated by 

taking the relative enrichment at positions from -2 to +2 kilobases from the transcriptional start 

across all genes, scale arbitrary.  
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Figure 3.4: CDX4 is binding at HOXA and CYP26A1 loci, but 

inducing expression differentially across populations 
A. Genome browser view of the HOXA cluster found on chromosome 7, displaying the CDX4 

ChIP reads for KDR+CD184- (Blue), KDR+CD184+ (Green), and KDR+CD235a+(Red) 

samples, with the CDX4 DOX induced samples read pileup in maroon, compared to controls in 

grey. Highlighted are several regions denoting highly significant peaks called by the MACS2 

software in the samples when compared to the no DOX controls. B. Gene expression of HOXA 

genes in RPKMs from the RNAseq paired with the ChIP samples; KDR+CD184- highlighted in 

blue, KDR+CD184+ highlighted in green, and KDR+CD235a+ highlighted in red. n = 3, error 

bars SEM, * is p < 0.05, ** p < 0.01 via students T test, error bars SEM.  C. Genome browser 

view of the CYP26A1 locus on chromosome 10, displaying read pileups from ChIPseq performed 

on KDR+CD184 (Blue), KDR+CD184+ (Green), and KDR+CD235a+(Red) samples. Sample 

tracks with DOX induced FLAG-CDX4 highlighted in maroon, compared to controls in grey. 

MACS2 significant peaks highlighted in blue. D. Gene expression of CYP26A1 in RPKMs from 

the RNAseq paired with the ChIP samples; KDR+CD184- highlighted in blue, KDR+CD184+ 

highlighted in green, and KDR+CD235a+ highlighted in red. Left plot shown without 

KDR+CD235a+ samples and right plot with. n = 3, error bars SEM, ** is p < 0.01 via students t 

test, error bars SEM. 

 

 

 

 



www.manaraa.com

59 

  

 

 



www.manaraa.com

60 

  

Figure 3.5: CDX4 is regulating CDX2 and TBX20, a cardiac 

transcription factor 
Genome browser view of the CDX2 locus on chromosome 13, displaying read pileups from 

ChIPseq performed on KDR+CD235a (Red). Sample tracks with DOX induced FLAG-CDX4 

highlighted in maroon, compared to controls in grey. MACS2 significant peak highlighted in 

blue. B. Gene expression of CDX2 in RPKMs from the RNAseq paired with the ChIP samples 

KDR+CD325a+ highlighted in red. n = 3, error bars SEM, * is p < 0.05 via students t test, error 

bars SEM. C. Genome browser view of the TBX20 locus on chromosome 7, displaying read 

pileups from ChIPseq performed on KDR+CD184- (Blue) and KDR+CD235a+ (Red). Sample 

tracks with DOX induced FLAG-CDX4 highlighted in maroon, compared to controls in grey. 

MACS2 significant peaks highlighted in blue.  D. Gene expression of TBX20 in RPKMs from 

the RNAseq paired with the ChIP samples KDR+CD184- highlighted in blue, KDR+CD184+ in 

green, and KDR+CD235a+ in red. n = 3, error bars SEM, * is p < 0.05 via students t test, error 

bars SEM. E. Gene expression of various cardiac related transcription factors in RPKMs from 

the RNAseq paired with KDR+CD235a+ ChIP samples. n = 3, error bars SEM, * is p < 0.05, * p 

< 0.01 via student t test, error bars SEM. 
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Figure 3.6: CDX4 expression during mesoderm formation 

leads to repression of cardiac factors under cardiogenic 

conditions 

A. WT and CDX4
y/-

,iCDX4 hPSCs (w/ or w/out 1 μg/ml DOX from days 2-3) were differentiated 

under cardiogenic conditions under hypoxia similar to previous hematopoietic conditions, with 

the same media base except alterations to cytokine concentration. B. Bulk culture of CDX4
y/-

,iCDX4 hPSCs (w/ or w/out 1 μg/ml DOX from days 2-3) was harvest at day 5 for RNA and 
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cDNA generated for RT-PCR. All genes were normalized relative to ACTB expression, n = 3, * is 

p < 0.05, ** is p < 0.01, ns is not significant, via students t test, error bars SEM. 
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Figure 3.7: Mesodermal CDX4 expression leads to 

suppression of cardiomyocyte formation 

A. WT and CDX4
y/-

,iCDX4 hPSCs (w/ or w/out 1 μg/ml DOX from days 2-3) were differentiated 

under cardiogenic conditions under hypoxia similar to previous hematopoietic conditions, with 

the same media base except alterations to cytokine concentration. At day 20, cells were 

disassociated, fixed/permeabilized and then stained for CD90 and cTNT for flow cytometry, 

shown are all cells negative for CD90. B. Quantification of flow cytometry on day 20 

differentiated WT and CDX4
y/-

,iCDX4 hPSCs (w/ or w/out 1 μg/ml DOX from days 2-3) for 

CD90-cTNT+ cells. WT n =2, CDX4
y/-

,iCDX4 n = 5. **** indicates p < 0.0001 between control 

and DOX treated CDX4
y/-

,iCDX4 hPSCs via students t test, error bars SEM. C. T20 cardiac 

differentiations from CDX4
y/-

,iCDX4 hPSCs (w/ or w/out 1 μg/ml DOX from days 2-3) were 

harvested for qPCR. Expression normalized to ACTB, n = 3, * p < 0.05, ** p < 0.01, error bars 

SEM.      
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Table 3.1: List of CDX4 target genes in different hemogenic 

mesoderm populations 
For each population, the genes that were associated (GREAT analysis151) with significant  CDX4 

peaks (MACS2141) and had a 1.5 fold change in RPKMs (>1, p < 0.05) when compared to their 

respective control population are listed below, segregated into genes that are upregulated with 

CDX4 induction and those that were downregulated. 

KDR+CD184- KDR+CD184+ KDR+CD235a+ 

Upregulated with CDX4 Downregulated 

with CDX4 

Upregulated with CDX4 Downregulated 

with CDX4 

Upregulated with CDX4 Downregulated 

with CDX4 

GNRH2 ALPK2 ABCG2 ALDH1A2 43891 43901 

GREB1 NFE2 ANGPT1 ALPK2 43893 ABTB2 

HOXA7 SLN ARHGAP10 HAS2 AAMDC ACKR3 

LMO2 TBX20 ARID5B LRRN1 ABCC5 ADA 

NAV1 
 

C3orf52 PITX2 ABCG2 ADGRD1 

PC 
 

CEP97 PODXL ABHD12 ALG1L 

PDE4D 
 

CYP26A1 RSPO2 ABHD5 ALPK2 

PLXNA2 
 

DHRS3 SBSPON ADD2 AMOTL1 

TGFBI 
 

DUSP5 TBX20 ADGRE5 ANGPT2 

TMPRSS11E ELL2 
 

ADGRL4 ANKH 

TRPA1 
 

EPB41L4A 
 

ADIPOR1 ANKRD1 
  

EPHA4 
 

AGPS ANXA8L1 
  

ERC2 
 

AGTPBP1 APCDD1L 
  

ETV1 
 

AHCYL2 APLNR 
  

FAM188A 
 

ALCAM AQP3 
  

FST 
 

ALDH1A1 ARHGAP32 
  

FZD6 
 

ALDH3A2 ARHGAP40 
  

GAP43 
 

ALDH4A1 ARL4D 
  

GOLIM4 
 

ALDH6A1 ASH2L 
  

GREB1 
 

ALDH9A1 B3GALT1 
  

GUCY1A3 
 

ALS2 BAG3 
  

HAND2 
 

AMIGO2 BCAR3 
  

HOXA5 
 

ANKRD6 BIN1 
  

HOXA7 
 

AP2B1 BMP2 
  

HOXA9 
 

AP4E1 BMP4 
  

HOXB4 
 

APLP1 BMPER 
  

HOXB7 
 

APOL2 BRINP1 
  

HOXC4 
 

APOOL C14orf132 
  

HTR2B 
 

ARHGAP10 C1GALT1 
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Chapter 4: CD1d marks CDX4+ mesoderm 
 

4.1 Abstract  
Having shown that CDX4 is a critical regulator of definitive hemogenic mesoderm148, a critical 

question remained: does CDX4+ mesoderm ultimately give rise to definitive hematopoietic 

mesoderm, or does it’s expression act in supportive manner in other cell types that do not 

directly give rise to hematopoiesis? Creating a CDX4 reporter that would label all CDX4+ cells 

with a fluorescent protein would allow for the purification of CDX4 expressing mesoderm 

through flow cytometry and to ask which lineages they ultimately contribute to. Although the 

generation of a triple mCherry-CDX4 reporter was ultimately unsuccessful and resulted in KO of 

CDX4, single cell transcriptomics allowed for the characterization of CDX4 expressing 

mesoderm and the discovery of a surface marker, CD1D, that correlated strongly with CDX4 and 

HOXA genes. Isolation of KDR+CD1d-/+ mesoderm under definitive hematopoietic conditions 

(CHIR99021+SB431542) confirmed that KDR+CD1d+ mesoderm was greatly enriched for 

expression of CDX4 (~20 fold), as well as HOXA7, HOXA9, and CDX1. Although some mildly 

CD1d+ cells were found within KDR+CD235a+ primitive hemogenic mesoderm, functional 

characterization did not reveal any significant differences in potential, and qPCR of CD1D 

demonstrated that it was not appreciably expressed in this population. Both CD1d- and CD1d+ 

definitive hemogenic mesoderm gave rise to CD34+ endothelium, but only CD1d+ progenitors 

were able to give rise to CD4/CD8+ T-cells and were significantly enriched for erythroid and 

myeloid colony forming progenitors. These data demonstrate that definitive hematopoietic 
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potential is almost entirely restricted to CD1d/CDX4+ mesoderm and that CD1d is positive 

marker for definitive hemogenic mesoderm. 

4.2 Methods  
Culture and differentiation. Hematopoietic differentiations and functional assays were 

performed according to the methods in Chapter 2, with the addition of SB431542 (6 μM) 

alongside CHIR9902171. 

Genome engineering of hPSCs. To generate the 3xmCherry-CDX4 reporter line, the same 

CDX4 CRISPR guides were used as before in Chapter 2, but also with plasmid based HDR 

template with homology arms containing the in-frame 3xmCherry construct.   

scRNA-seq analyses. The scRNAseq datasets were analyzed as described in Chapter 2, but 

pseduotime analysis was omitted.  

Gene Expression analyses. qRT-PCR was performed as described in Chapter 2.  

Flow Cytometry and Cell Sorting. Flow cytometry was performed for hematopoietic 

differentiations as previously described, using methods from Chapter 2. CD1d antibody (Clone 

CD1d42)  was obtained from BD Pharmigen.  

 

4.3 Development of a CDX4 fluorescent reporter   
 In order to address lineage questions of CDX4 expressing mesoderm, a way to isolate and purify 

CDX4+ cells was needed. Due to technical problems associated with using traditional CRE-LOX 

recombination systems used in many lineage tracing studies in hPSCs165,166, an in-frame 

fluorescent CDX4 reporter design was selected. A design with triple repeat mCherry 
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(3xmCherry) and E2A linkers was used167, to aid in robust fluorescence with lower levels of 

expression. The construct was designed to be inserted at the 5’ end of CDX4 via homologous 

recombination after CRISPR Cas9 mediated double strand breaks (Figure 4.1A). After PCR 

genotyping and sanger sequencing confirming correct insertion of the construct, the 3xmCherry 

hPSC line was differentiated under basal, high WNT (CHIR99021), and low WNT (IWP2) 

conditions and the presence of mCherry fluorescence assessed via microscopy and flow 

cytometry (Figure 4.1B). Treatment with CHIR should have induced CDX4-dependent mCherry 

expression but unexpectedly, there was no mCherry signal under any culture conditions. 

Continued culture with the 3xmCherry line to day 8 revealed there was a distinct lack of 

CD34+CD43-CD73-CD184 hemogenic endothelium (HE) under all conditions. Taken together, 

these observations suggest there was a disruption in transcription for endogenous CDX4 as a 

result of insertion of the 3xmCherry construct, as the CDX4y/- KO hPSCs also displayed a 

similarly large reduction in HE. This was likely due to insertion at the 5’ end of CDX4, possibly 

disrupting a regulatory element and would likely have functioned better with a 3’ insertion.  

4.4 Identifying CDX4+ mesoderm with scRNAseq 
With the 3xmCherry-CDX4 reporter disrupting the locus and not displaying any mCherry 

expression at expected times during the differentiation, other methods were needed to be able to 

address the potential lineages arising from CDX4+ mesoderm. Our lab had recently performed 

single cell transcriptomic analysis on our bulk day 3 cultures under definitive 

(CHIR99021+SB431542) and primitive (IWP2) hematopoietic conditions. This powerful dataset 

would allow for precise transcriptional analysis of CDX4+ cells in the CHIR+SB (CSB) dataset 

and could be used to search for potential surface markers that could be used to isolate CDX4 

expressing mesoderm. After the cells were processed using the 10X Chromium system, the 
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sample sets were sequenced, and the reads aligned and counted using the 10X CellRanger 

package. With >6,000 cells identified in each dataset after removing low gene count and 

normalized to percent mitochondrial gene expression, the CSB and IWP2 datasets were 

integrated using the Seurat software package136, and a UMAP generated to place similar cells 

together in two dimensional space. The Seurat clustering algorithm determined that there were 

11 distinct clusters of cell types within the integrated UMAP (Figure 4.2A), with variable 

contribution from either dataset to each cluster.  

In order to determine which cell types were represented within each of the clusters within the 

dataset, the expression of several germ layer markers was assessed: NANOG and SOX2 for 

pluripotent/primitive streak cells, KRT7, DLX5, and TFAP2A for ectoderm, HNF1B, SOX17, and 

FOXA2 for endoderm, and KDR/T for mesoderm (Figure 4.2B). This analysis revealed there 

were 5 distinct mesodermal clusters, one of which was composed of GYPA/B/E (cluster 5), 

which was comprised mainly of cells from the IWP dataset, suggesting these cells are the 

primitive hemogenic mesoderm. Of the remaining four mesoderm clusters, CDX4 expression 

was predominately found within clusters 1 and 2, with some expression found within one of the 

ectoderm clusters (Figure 4.2C). Having identified the mesodermal cell clusters that are 

CDX4+, gene expression analysis could be performed on these clusters using only the cell from 

the CSB dataset, enriching for the possibility of identifying definitive hemogenic mesoderm. 

When cluster 1 cells were compared to the rest of the cells in the CSB dataset, differentiation 

gene analysis revealed a number of HOXA genes, as well CDX1/2 (Table 4.1). Interestingly, one 

of the top 30 genes identified was CD1D, a non-canonical MHC receptor found on antigen 

presenting cells that binds to various lipid/glycolipid ligands168. It is unclear why CD1D would 

be expressed in developing hemogenic mesoderm, as there would be no immune cells in the 
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developing embryo at an equivalent timepoint. However, the expression of CD1D was highly 

correlated with CDX4 (Figure 4.2D), suggesting that CD1d antibodies could be used to help 

purify CDX4+ cells from mesoderm via FACS. Additionally, when all KDR+ cells were 

examined for CD1D expression, it was found that CDX4+HOXA+ cells had the highest 

proportion of CD1D+ cells, over the only CDX4+ or only HOXA+ cells alone (Figure 4.2E). 

While there are CD1D+ cells that are not CDX4+ and vice versa, these data suggest that FACS 

isolation of CD1d+ cells could be used to enrich for CDX4+ cells.  

4.5 Phenotypic characterization of CD1d+ mesoderm 
To test this new potential marker of CDX4 expressing mesoderm, day 3 WT hPSCs 

differentiated under definitive (CSB) and primitive (IWP2) hemogenic conditions were harvest 

for flow cytometry. KDR+CD235a- mesoderm was assess for CD1d expression, where 

approximately 60% of the cells were positive for CD1d gated on FMO controls (Figure 4.3A). 

Despite low levels of CD1D+ cells in the IWP2 scRNAseq dataset, KDR+CD235a+ hemogenic 

mesoderm also appeared to have some CD1d+ cells, though fewer than KDR+CD235a-. To 

confirm the hypothesis that CD1d expression would be surrogate marker for CDX4, 

KDR+CD235a-CD1d-/+ (CSB) and KDR+CD235a+CD1d-/+ (IWP2) cells were FACS isolated 

and qPCR performed. CDX4 was highly enriched (~20 fold) in KDR+CD1d+ mesoderm over 

KDR+CD1d- (Figure 4.3B), validating the previous observations in the scRNAseq dataset. The 

CSB derived KDR+CD235a-CD1d+ sorted cells were also confirmed as expressing CD1D at the 

transcript level via qPCR, but interestingly the IWP2 derived KDR+CD235a+CD1d+ cells did 

not have a significant difference in CD1D expression over the KDR+CD235a+CD1d- cells. This 

suggests either that CD1D is being downregulated in this population and only residual protein is 

being detected or that the CD1d+ cells are a potential artifact of flow cytometry. The 
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KDR+CD235a-CD1d+ cells also had increased expression compared to the KDR+CD235a-

CD1d- cells for HOXA7, HOXA9, and CDX1, again confirming the informatics analysis that 

suggested CD1D+ cells would be enriched for CDX/HOXA expression (Figure 4.3C). 

4.6 Functional characterization of CD1d+ mesoderm 
Having demonstrated that CD1d+ mesoderm strongly enriches for CDX4+ mesoderm, it is now 

possible to ask whether CDX4+ mesoderm gives rise to hematopoietic lineages by using CD1d 

as a surrogate surface marker. CD1d-/+ cells were FACS isolated on day 3 of differentiation 

from KDR+CD235a- (CSB) definitive KDR+CD235a+ (IWP) primitive hemogenic mesoderm, 

followed by reaggregation and continued culture until day 8. Flow cytometry on day 8 of these 

four populations revealed a production of mainly CD43+ hematopoietic progenitors from 

KDR+CD235a+ mesoderm and the production of CD34+CD43- endothelium from 

KDR+CD235a- mesoderm, in line with previous observations of these populations85 (Figure 

4.4A). To assess which of these populations could give rise to lymphoid cells, indicative of 

definitive hematopoietic potential, either CD34+CD43+ progenitors (IWP2) or CD34+CD43- 

progenitors (CSB) were FACS isolated and cultured with OP9-DL4 stroma under T-cell 

promoting conditions. After 22 additional days in culture, flow cytometry of each respective 

population revealed that only the KDR+CD235a-CD1d+ mesoderm was ultimately capable of 

giving rise to CD45+CD56-CD4/8+ T-cells. Interestingly, some CD56+ cells were generated in 

OP9-DL4 culture from the KDR+CD235a+CD1d+ culture. This suggests that perhaps this 

population is capable of giving rise to CD56 natural killer (NK) cells, and it has been previously 

demonstrated that CD34+CD43+ WNT independent primitive hematopoietic progenitors can 

give rise to NK cells34.  
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Having demonstrated that lymphoid potential was restricted to KDR+CD235a-CD1d+ 

mesoderm, myeloid and erythroid lineages also needed to be assessed, to determine whether 

KDR+CD235a-CD1d+ is exclusive for definitive hemogenic mesoderm. Additionally, it was 

unclear if CD1d was a functional marker for segregating any types of primitive hemogenic 

mesoderm. CD34+CD43+ progenitors were FACS isolated on day 8 from reaggregated 

KDR+CD235a+CD1d-/+ mesoderm and plated into hematopoietic methylcellulose media and 

colonies assessed 8-10 days later. There was no significant difference in myeloid or erythroid 

colony forming units between KDR+CD235a+CD1d- and KDR+CD235a+CD1d+ mesoderm, 

with only a slightly larger amount of granulocyte forming colonies (Figure 4.4B). When 

KDR+CD235a-CD1d-/+ derived CD34+CD43- endothelium was FACS isolated on day 8 and 

placed into EHT culture for an additional 9 days72,87, the CD1d+ derived endothelium produced 

significantly more floating hematopoietic progenitors compared the CD1d- derived endothelium, 

indicating that more cells were likely undergoing the EHT. When the EHT cultures were 

harvested and plated into hematopoietic methylcellulose media and colonies counted after 12-14 

days, the majority of erythroid and myeloid colonies were restricted to the CD1d+ mesoderm, 

with 3/6 replicates being completely absence of any hematopoietic colonies. Taken together, 

these data demonstrate that CD1d is a marker of definitive hemogenic mesoderm, as 

KDR+CD235a-CD1d+ mesoderm contains nearly all definitive lymphoid, myeloid, and 

erythroid potential in a high WNT, low TGFβ culture.  

4.7 Discussion  
Despite the failure of the 3xmCherry-CDX4 reporter to effectively label CDX4+ mesoderm and 

disruption of endogenous expression, scRNAseq allowed for the identification of a correlate 

marker, CD1d. The isolation of CD1d+ mesoderm enriched not only for CDX4/HOXA 
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expressing cells, but also nearly all definitive hematopoietic potential, representing a novel 

marker for definitive hemogenic mesoderm. It still remains unclear why CD1d is being 

expressed in this particular developmental population and why it is correlated with hemogenic 

mesoderm. Given that CD1d responds not only to foreign glycolipids from bacteria and other 

organism, but also to endogenously produced glycolipids169, it is possible that it is being utilized 

in some regulatory manner in these cell types. There is some evidence that CD1d regulates HSC 

potential and function, albeit in a non-cell autonomous manner170; perhaps CD1d also plays a 

role in the endothelial to hematopoietic transition. Treatment with α-galactosylceramide or other 

CD1d ligand could test these possibilities169, perhaps leading to an inflammatory response in 

these cell types or some other, poorly understood effect.  

In addition to understanding why CD1d is expressed in these cell types, there is also the question 

of how it becomes expressed in these cell types. Cursory experiments using the CDX4-/y KO line 

suggested that CD1d expression at day 3 was not affected by loss of CDX4. Additionally, data 

from paired ChIP/RNAseq of mesoderm isolated from the CDX4-/y, iCDX4 rescue line revealed 

no CDX4 binding peaks near the CD1D locus, nor any changes in the gene expression as a result 

of CDX4 induction via DOX treatment. This would suggest that CD1d is simply a correlative 

mesodermal marker and is not directly regulated by CDX4. Analysis of expression in mouse 

scRNAseq gastrulation datasets revealed the expression of Cd1d1 within some mesodermal cells, 

suggesting that its expression is also found in in vivo and within other species at a correlate 

timepoint (E7.25, E7.5)171. In this dataset, Cd1d1+ cells did not overlap significantly with Cdx4 

expressing cells, perhaps suggesting species differences, though whether CD1d protein is 

detectable in these populations or the lineages that Cd1d1 expressing mesoderm in the mouse 

gives rise to is not known. Given that CD1d expression was lower in IWP2 treated 
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KDR+CD235a+ primitive hemogenic mesoderm, it is possible that the WNT agonist 

CHIR99021 that is used to specify definitive hemogenic mesoderm is leading to this increase in 

CD1d. The TGFβ inhibitor SB431542 was also used to aid specification of CDX/HOXA+ 

hemogenic mesoderm as demonstrated by others118, which could also leading to an increase in 

CD1d expression, as TGFβ signaling has been shown to inhibit CD1d expression172. Perhaps the 

inhibition of TGFβ is leading to the expression of CD1d and by testing varying concentrations of 

SB431542 or adding the Nodal ligand activin A, which is also inhibited by SB431542, could 

lead to some insight on what regulates CD1d expression. Regardless, the identification of this 

novel marker allows for greater purification of CDX4+ definitive hemogenic mesoderm and 

CD1d can be used as a selection marker to purify mesoderm and allow for greater interrogation 

of further lineage questions. 
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Figure 4.1: Design and test of an in-frame CDX4 reporter line 

A. A schematic of the CDX4 locus, detailing the design of a triple mCherry (3xmCherry) 

florescent construct to be placed at the 5’ end of exon 1 of CDX4, through homologous 

recombination after cleavage with CRISPR Cas9. B. The CDX4 3xmCherry hPSC line was 
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differentiated to day 3 mesoderm with BMP4/bFGF/activin A, as well as to definitive hemogenic 

mesoderm via CHIR99021 (CHIR) treatment, or primitive hemogenic mesoderm with IWP2 

treatment. Flow cytometry was performed to assess for the formation of KDR+ mesoderm, as 

well as to assess for CDX4 dependent mCherry expression. C. CDX4 3xmCherry hPSCs were 

differentiated to day 8 hemogenic endothelium stage under established conditions and flow 

cytometry performed. Shown gated on CD34+ cells, looking at endothelial markers CD184 and 

CD73. 
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Figure 4.2: scRNAseq of allows for characterization of CDX4+ mesoderm and 

reveals CD1D as a potential surface marker 

A. scRNAseq was performed on bulk culture treated with CHIR99021 and SB431542 (CSB) or 

IWP2 at day 3, after the specification of mesoderm to better assess the culture heterogeneity and 

to find hemogenic mesoderm. Briefly, the cells were dissociated via trypsin and fixed in 

methanol, before being processed via 10X Genomics Chromimum 3’ kit, capturing >6000 cells 

per sample set. The libraries were sequencing via an Illumina HiSeq 3000 and processed via the 

Cell Ranger pipeline. The Seurat v3 R package was used to integrate the cells from the CSB and 

IWP2 datasets and organize them into two-dimensional space via UMAP. Clustering of the cells 

was then performed using the Seurat algorithm, resulting in 11 algorithmically distinct clusters 

denoted by different colors. On the right, the contribution of each sample (CSB in blue or IWP2 

in red) is shown to each region of the UMAP. Presumptive identity of each cluster is indicated by 

colored circle (pluripotent/primitive streak - blue, ectoderm - green, endoderm - yellow, and 

mesoderm - red). B. Expression of various pluripotent/primitive streak (blue), ectoderm (green), 

endoderm (yellow) and mesoderm (red) genes was assess via dot plot, where the expression of 

each gene is shown for a particular cluster. Size indicates relative numbers of cells expressing a 

particular gene in the given cluster, blue color intensity indicates average relative level of 

expression among cells in the cluster. C. Expression of CDX4 shown on the UMAP (within only 

the CSB cells), where darker blue indicates higher expression. D. Expression of CD1D shown on 

the UMAP (within only the CSB cells), where darker blue indicates higher expression. E. Violin 

plot of the CD1D expression of different KDR+ cell types with or without expression of CDX4 

or HOXA genes. Dots indicate individual cells, and the colored outline indicates quantiles based 

on the total number of cells. 
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Figure 4.3: Phenotypic characterization of CD1d expressing cells within day 3 

mesoderm 

A. Representative flow cytometry of both CHIR99021/SB431542 (CSB) and IWP2 treated day 3 

cultures for KDR, CD235a, and CD1d. KDR+CD235a- definitive hemogenic mesoderm and 

KDR+CD235a+ primitive hemogenic mesoderm were then assessed for the expression of CD1d 

in the plots on the right. B. KDR+CD235a-CD1d-/+ and KDR+CD235a+CD1d-/+ populations 

were isolated via FACS for RNA, in order to make cDNA and perform RT-qPCR for CDX4, 

CD1D, and GYPA. n = 3, ** p < 0.01, *** p < 0.001 via students t test. C. Expression of CDX 

and HOXA genes via qPCR in KDR+CD235a-CD1d-/+ FACS isolated cells. n =3, * is p < 0.05 

via students t test, error bars SEM. 
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Figure 4.4: Functional characterization of CD1d+ mesoderm 

A. Representative flow cytometry plots of CHIR99021/SB431542 (blue) and IWP2 (red) 

differentiated hPSCs, sorted on day 3 for KDR+CD235a-/+CD1d-/+ and reaggregated for an 

additional 5 days and harvested again for FACS on day 8. IWP2 treated samples were then FACS 

isolated for CD34+CD43+ and CSB samples for CD34+CD43- progenitors and cultured on OP9-

DL4 stroma under T-Cell promoting conditions to test for lymphoid potential after 22 days of 

culture. Cells were then harvested for flow cytometry, CD45+CD56- (middle flow plots) 

progenitors were then gated to exclude natural killer cells and assessed for CD4/CD8 T-cells 

(right flow plots). B. Day 3 sorted KDR+CD235a+CD1d-/+ (IWP2) or KDR+CD235a-CD1d-/+ 

(CSB) hemogenic mesoderm was isolated and reaggregated for an additional 5 days, flowed by a 

second FACS isolation of CD34+CD43+ (IWP2) or CD34+CD43- (CSB) progenitors, which 

were seeded into hematopoietic methylcellulose media for colony forming assays (after 

additional EHT culture for CSB CD34+). The numbers of colonies were then assessed after 8-10 

days (IWP2) or 10-12 days (CSB) and the numbers were counted of burst forming units 

erythroid (BFU-E) and colony forming units (CFU) of erythroid (E), granulocyte (G), myeloid 

(M), and mixed granulocyte/myeloid (GM). IWP2 n=4, CSB n =6, error bars SEM. 
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Table 4.1: CD1D identified as a DEG in UMAP cluster 1  

Cluster 1 from the Seurat generated UMAP projection of scRNAseq of hemogenic mesoderm 

was identified as having mesodermal markers such as KDR, as well as a large number of CDX4+ 

cells. Taking only the CSB derived cells from this cluster (further enriching for CDX4+ cells) 

and then performing DEG analysis in comparison to the rest of the CSB culture revealed a 

multitude of DEG’s, including several HOXA and CDX genes (highlighted in red). Displayed is 

the top 30 differentially expressed genes ordered by padj value, CD1D highlighted in green. 
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Chapter 5: Discussion 
 

5.1 CDX4 in hematopoietic development  
True functional assessment via engraftment studies in immunocompromised mice of mesoderm 

induced iCDX4 hematopoietic progenitors was not assessed in this work, questioning whether 

CDX4 can be truly termed as a ‘regulator’ of definitive hematopoiesis. While T cell potential was 

found to be reduced in frequency as a result of loss of CDX4 and restricted to a 

KDR+CD1d+CDX4+ mesodermal progenitors, the presence of lymphoid potential is not 

sufficient to characterize these as definitive hematopoietic progenitors. The existence of lineages 

such as the LMPP53 in mouse development that give rise to lymphoid progenitors independent of 

the HSC suggests that this metric alone cannot be used alone to denote definitive, HSC 

dependent hematopoiesis. Speculating on whether enforced mesodermal CDX4 expression would 

result in the production of an engraftable progenitor, it is probable that CDX4 expression alone 

would be insufficient to specify a true HSC for several reasons. The first being that mesodermal 

CDX4 expression only lead to comparable levels of progenitors as mesodermal WNT agonism 

when measured by colonies in methylcellulose, suggesting that WNT agonism alone is able to 

activate CDX4 with the same functional consequences as overexpression. Secondly, CDX4y/- did 

not lead to a complete loss of erythro-myleloid-lymphoid bearing HE, suggesting perhaps CDX4 

simply influences the amount of HE specified, not necessarily its lineage potential or ability to 

engraft.   Thirdly, other transgenic approaches to producing an HSC in vitro have need a 

minimum of seven transcription factors activated post EHT in order to produce an engraftable 

progenitor173. While three of these factors were HOXA genes and appear to activated by CDX4 at 

an early stage after mesoderm specification, overexpression of ERG, LCOR, RUNX1, and SPI1, 
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were also required to produce an engraftable progenitor. In this work, none of these genes are 

activated by mesodermal CDX4 expression at any measured stage, suggesting that there are other 

regulatory signals that are likely needed outside of CDX4 that lead to the upregulation of these 

factors and ultimately specification of an engraftable progenitor. For similar reasons, enrichment 

of CDX4+ mesoderm using FACS of KDR+CD1d+ cell is also unlikely to result in the 

specification of an engraftable progenitor   

Despite these caveats, this work demonstrates CDX4 appears to regulate the development of 

human definitive-like hemogenic mesoderm through genetic studies. Important questions are still 

raised, however, when examining the literature surrounding CDX4 in other model systems. In the 

zebrafish, cdx4 KO appears to affect all waves of hematopoiesis112,130, as the area known as the 

interior cell mass (ICM), where primitive hematopoiesis occurs in the zebrafish174, also displayed 

deficits in hematopoiesis. Additionally, in mouse embryonic stem cells models, Cdx4 induction 

appeared to positively regulate primitive hematopoiesis84,114 and KO of Cdx4 in E8.5 mouse 

embryos lead to a deficit in primitive hematopoietic progenitors113. This directly contrasts the 

results from our differentiation model system, where loss of CDX4 lead to an expansion in 

primitive hematopoiesis and a deficit in definitive.  

What could explain these contrasting results?  Perhaps some of the explanation could also lie in 

species differences between CDX and HOX gene expression; zebrafish have only 2, instead of 3 

cdx genes: cdx4 and cdx1a. Although it is broadly assumed that CDX genes are redundant in 

their functions106,107,130, but perhaps the absence of one CDX gene in the zebrafish could explain 

the differences in their regulation and expression. As for the mouse, it is less clear what could be 

causing these differences in CDX dependent regulation of hematopoiesis. Some of these 

differences could be a result of timing of the stages of hematopoietic development, which is 
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faster in mouse pluripotent stem cell differentiations compared to hPSCs. Additionally, the 

aforementioned functional analysis of Cdx4 KO mouse yolk sacs on embryonic day 8.5113 would 

also capture the erythro-myeloid progenitors (EMPS) at this particular time point48,120, which 

could suggest that the EMP in the mouse might be dependent on Cdx4. The primitive program 

has also showed to be dependent on WNT activation in mouse pluripotent stem cell 

differentiations86, whereas the opposite is true in hPSCs, as the primitive program is independent 

of WNT signaling85. Interestingly, in other studies there was no overt hematopoietic phenotype 

in Cdx4 KO mice, which appeared normal and healthy despite apparent reductions in yolk sac 

hematopoiesis175.  

Although not capable of an HSC, the EMP in the mouse gives rise to more mature erythrocytes 

and granulocytes, as well as natural killer cells34 and has sometimes been termed as a 

“definitive” hematopoietic progenitor with more in common with the HSC than other primitive 

yolk sac progenitors176. Perhaps the CDX4 dependent population in our hPSC differentiation 

model could resemble a human EMP, though the mouse EMP does not have lymphoid/T-Cell 

potential (excepting natural killers), whereas our CDX4 dependent definitive progenitors are 

capable of robust T-cell production on OP9-DL4 stroma. There is also in vivo evidence that the 

human aorta gonad mesonephros (AGM) region where the HSC emerges is highly enriched for 

HOXA genes118, again supporting the idea that CDX4/HOXA expression is correlative of a 

definitive hematopoietic progenitor. Observations from our lab suggest that KDR+CD184-

CDX4+ mesoderm gives rise to hematopoietic progenitors independent of retinoic acid signaling, 

which the HSC is known to dependent on147, but it has not been assessed whether CDX4 KO 

would affect the specification of KDR+CD184+CDX4lo retinoic acid dependent hematopoiesis. 

Another possibility is that CDX4 dependent hematopoiesis could represent a definitive, intra-
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embryonic hemogenic endothelium that is incapable of giving rise to an HSC; recent single cell 

transcriptomics of early human embryos identified two transcriptional distinct waves of 

hemogenic endothelial cells in the embryo proper, one that appeared primed for HSC 

specification and one not71.  Whether the EMP or human equivalent of the EMP is dependent on 

CDX4, or the CDX4 dependent HE in our system represent an ‘early’ hemogenic endothelium 

that does not produce an HSC, this work advances the intricate and complicated field of 

embryonic hematopoietic development.  

Now that CDX4+ mesoderm can be isolated effectively through the use of CD1d as a correlative 

marker, further questions on what lineages in our system arise from CDX4+ cells. It appears 

based on our informatics data that the CD184-, CDX4+, CYP26A1+, retinoic independent 

mesoderm also expresses CD1D. This would indicate that CDX4+ mesoderm is likely giving rise 

to retinoic acid independent hematopoiesis, although CDX4 and CD184 are not mutually 

exclusive. The ability of KDR+CD235a-CD1d-/+ mesoderm to give rise to retinoic dependent 

hematopoiesis has not been tested, though it is likely that KDR+CD1d- mesoderm might 

represent the CD184+ALDH1A2+CYP26A1-  retinoic acid dependent hemogenic mesoderm. 

This hypothesis is further supported by the fact that exogenous CDX4 results in the expression of 

CYP26A1, which is expressed under normal, WT conditions in the KDR+CD184- mesoderm. 

Additionally, the HOXA signature of CD184- mesoderm was recapitulated in the CD184+ 

mesoderm when CDX4 expression was enforced, suggesting that exogenous CDX4 might 

convert CD184+ retinoic acid dependent mesoderm to a CD184- like retinoic acid independent 

mesoderm. The summarized model of these observations and hypothesizes are displayed in 

Figure 5.1. 
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It is still unclear how CDX4 is leading to the repression of the primitive program from the paired 

ChIP/RNAseq experiments. Crosstalk between CDX and WNT signaling has been observed in 

different contexts84,108,109, and it could be possible that CDX4 induction is leading to an 

upregulation of WNT signaling, which could be repressing the primitive program as has been 

previously observed85. Looking at genes that were targeted by CDX4, both WNT5A and WNT5B 

were induced as a result of enforced CDX4 expression, though these ligands are known to 

stimulate the non-canonical or β-catenin independent WNT signaling177. Given that low levels of 

β-catenin are needed to produce primitive hemogenic mesoderm85, the induction of CDX4 

leading to more non-canonical WNT and further suppression of β-catenin does not support a 

WNT-CDX4 based repression of primitive hematopoiesis. Changes in FZD6, 7, and 8 were also 

observed in CD235a+ primitive hemogenic mesoderm after induction of CDX4, further 

complicating the possible interactions, making it difficult to formulate a hypothesis of a precise 

mechanism for the WNT related suppression of primitive hematopoiesis. Further study will be 

needed to tease out the precise nature of this relationship, perhaps through the use of different 

WNT ligands or genetic studies with KO’s of various WNT receptors.  

With the knowledge that CD184 and CD1d are markers segregating (potentially) very different 

types of definitive hemogenic mesoderm, future studies can tease out the precise lineage 

contributions of these mesodermal populations to CDX4-dependent/independent and retinoic 

acid-dependent/independent hematopoiesis. The genetic tools also provided as a result of this 

work, including the CDX4-/y, iCDX4 rescue line will also allow for testing the dependency of 

retinol responsive hematopoiesis on CDX4. The link between CDX4 and medial HOXA genes is 

also strongly suggested in the work, though the precise population dependent relationships will 

need to be teased out using genetic complementation studies. These advances will also provide a 
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foundation to further improve the hematopoietic differentiation of hPSCs, providing a more pure 

and better defined hemogenic mesoderm. Knowledge of the role of CDX4 also provides an 

indicator of definitive hematopoietic potential and can be leveraged to find culture conditions 

that increase its expression and perhaps, eventually, the HSC.  

5.2 CDX4 in cardiac development  
The discovery that CDX4 is negatively regulating the expression of TBX20 directly lead to the 

hypothesis that CDX4 expression represses cardiomyocyte specification, which was 

demonstrated functionally using the CDX4-/y, iCDX4 rescue line. Although similar observations 

had been found in mouse embryonic stem cells and zebrafish159, as well as in mouse embryos158, 

the mechanism of how CDX gene expression lead to a repression of the cardiac program was not 

clear. It is possible that CDX4 protein binding to an enhancer or regulatory region could recruit 

other factors that lead to a suppression of genes such as TBX20, through inactivation of these 

regions. While CDX genes were found to interact with chromatin remodelers such as 

SWI/SNF154, it is unclear if CDX4 working in a similar manner, as SWI/SNF generally opens 

chromatin, whereas in this work it appears to be repressive. Additional experiments will be 

necessary to show a non-canonical, repressive function of CDX4 outside of its known function as 

a transcription factor. DNA Binding motif analyzes of these CDX4-bound regions could reveal 

partners that could be acting cooperative with CDX4, though it is possible that CDX4 protein 

might be the only member of a putative complex that directly binds to DNA. To address this 

possibility and to more directly discover binding partners, lysates from differentiated mesoderm 

could be probed with FLAG-CDX4 protein and mass spectrometry performed to find enriched 

these partners. Without these analyzes identifying possible repressive binding partner for CDX4, 

there still remains the possibility that CDX4 binding near TBX20 is simply a coincidence and the 
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transcriptional repression seen is resulting from unknown indirect regulation from CDX4 acting 

on another gene or genes. 

Evidence of a common origins and opposing, intertwining genetic regulation of cardiac lineages 

and the primitive hemangioblast has been hinted at in the literature previously. Exogenous 

activation of notch signaling in mouse pluripotent stem cell differentiations was able to respecify 

hemangioblast containing populations to cardiac cells95. Additionally, loss of Scl in mouse 

embryos lead to the exogenous production of beating cardiomyocytes from yolk sac 

endothelium96. In the ChIP/RNAseq of KDR+CD235a+ mesoderm, there were no changes in 

TAL1(SCL) or in components of the notch signaling pathway between KO of CDX4 and CDX4 

induction, which is somewhat surprising given that cdx4 was found to bind and activate scl in 

zebrafish131. It is possible that changes in these genes/pathways might become apparent in later 

stages in of the differentiation post mesoderm formation and that CDX4 might result in indirect 

activation of notch or TAL1. It is also unclear if the increase in cardiomyocytes seen as a result of 

loss of CDX4 represents the conversion of progenitors to the cardiac lineage, or if there if there is 

simply an expansion of cardiomyocyte progenitors as a result of the formation of less hemogenic 

mesoderm. 

The observation that ventricular cardiac progenitors arise from a CD235a+ mesoderm134, low in 

CDX4 expression, strongly suggests that CDX4 is playing an important gate keeper role in 

cardiac specification, potentially by promoting hematopoietic lineages over cardiac. Although it 

has not been proven functionally, it is likely that day 3 KDR+CD235a+ progenitors are the 

source of ventricular cardiomyocytes as well as primitive hemogenic mesoderm. Whether 

CD235a markers both hemogenic and cardiogenic mesoderm or whether KDR+CD235a+ 

mesoderm represents a dually cardiac/hematopoietic capable population is not precisely clear. 
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Additionally, the knowledge that a retinol responsive mesoderm population that gives rise to 

atrial cardiomyocytes134 could indicate that atrial cardiac progenitors might resided with 

KDR+CD184+ mesoderm. Given that this population is low in CDX4 and CYP26A1 expression, 

while high in ALDH1A2, and clearly responsive to retinol in a hematopoietic context, cardiac 

promoting conditions might reveal that CD184+ is also capable of atrial cardiomyocytes. 

Observations in zebrafish suggest that effects on cardiac development due to loss of cdx genes is 

dependent on concomitant inhibition of retinoic acid signaling159. This hypothesis would also 

suggest that not only is CDX4 repressing ventricular cardiomyocytes through direct repression of 

TBX20 and indirect repression of other factors (perhaps through CDX2), but CDX4 might also be 

repressing atrial cardiac progenitors through induction of CYP26A1. 

These predications could represent a more in-depth understanding of which types of mesoderm 

both hematopoietic and cardiac progenitors come from, summarized in Figure 1. If true, this 

greater model of what mesoderm gives rise to which progenitor could have great implications for 

hematopoietic and cardiac differentiation protocols. Ensuring the correct types of mesoderm are 

specified at outset of a differentiation has a large impact of the efficiency and numbers of the 

target cell type. Reducing the expression of CDX4 during mesoderm formation could possibly be 

used to enhance the differentiation of ventricular cardiomyocyte differentiations, and possibly 

atrial cardiomyocyte differentiations as well. Given that the treatment of the WNT inhibitor 

IWP2 from days 3-5 is critical for cardiomyocyte differentitation178, it is possibly that this leads 

to low CDX gene expression and thus prevents CDX dependent inhibition of cardiomyocyte 

transcription factors.  Further experimentation with FACS isolation of these different 

mesodermal populations, as well as under various will be needed to determine if these 
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observations will be supported by the data and applicable to improving existing cardiomyocyte 

differentiation protocols. 
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Figure 5.1 Model of early mesodermal development in hPSCs  

Within mesoderm under high WNT conditions, KDR+CD184-(CD1d+) ROH independent 

hemogenic mesoderm is specified, having a CDX4+HOXA+CYP26A1+ gene signature, 

ultimately giving rise to erythro-myelo-lymphoid definitive hemogenic endothelium. High WNT 

conditions also give rise to KDR+CD184+(CD1d-) ROH dependent hemogenic mesoderm, with 

lower levels of CDX4 expression, allowing for expression of TBX20 and leading to low 

CYP26A1 expression. This population likely also gives rise to atrial cardiomyocytes, in addition 

to ROH-dependent erythron-myelo-lymphoid hematopoiesis. Lastly, under low WNT conditions 

a KDR+CD235a+ that is CDX4- is produced. This lack of CDX4 expression allows for increased 

TBX20 expression, as well as induction of other cardiac related transcription factors, leading to 

the specification of ventricular cardiomyocytes. This population gives rise to primitive 

hematopoietic progenitors through an unknown, but low WNT dependent mechanism. 
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